971 resultados para Mast cell tumors
Resumo:
Aims: Granular cell tumor (GCT) is a rare neoplasm that can appear in any site of the body, but most are located intraorally. Its histogenetic origin remains unclear. This report analyzes the immunoprofile of 15 cases of granular cell tumors, occurring in 13 women and 2 men and the lesions were located on the tongue or upper lip. Patient age ranged from 7 to 52. Methods: The patients demographic data and the cytological and architectural features of the lesions were analyzed in oral GCTs (n = 15). The lesions were also submitted to a panel of immunohistochemical stains with antibodies against S-100, p75, NSE, CD-68, Ki-67, Synaptofisin, HHF-35, SMA, EMA, Chromogranin, Progesterone, Androgen and Estrogen. Results: Among the fifteen cases analyzed, the most common location was the tongue (84.6%). Histologically, the tumors exhibited cellular proliferation composed mainly by polygonal cells presenting an abundant granular eosinophilic cytoplasm. The nuclei were central, and the cell membranes were moderately clear. No mitotic figures were observed. The immunohistochemical analysis showed positivity in all cases for S-100, p75, NSE and CD-68, and no immunoreactivity for Ki-67, Synaptofisin, HHF-35, SMA, EMA, Chromogranin, Progesterone, Androgen and Estrogen. Conclusion: The immunoprofile of granular cell tumors showed nerve sheath differentiation - lending support to their neural origin - and helping to establish a differential diagnosis between this lesion and other oral granular cell tumors, whether benign or malignant.
Resumo:
Mast cells are important effector cells of the immune system. We describe a rapid and inexpensive microassay to determine histamine release from human gingival mast cells. The assay is based on the coupling of histamine with o-phthalaldehyde (OPT) at a highly alkaline pH to form a fluorescent product. Using this assay with a sample volume of 10 mul/well in a 384 black well microplate, the histamine detection limit was 0.031 mug/ml. The human mast cell line (HMC-1) and fresh mast cells isolated from human gingival tissue (n = 10) were stimulated with substance P, anti-IgE or calcium ionophore A23187, Calcium ionophore significantly increased histamine release from HMC-1 cells and gingival mast cells (p < 0.05). This microassay will facilitate the study of mast cell histamine release in diseased oral mucosa.
Resumo:
Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.
Resumo:
Mast cells are mobile granule-containing secretory cells that are distributed preferentially about the microvascular endothelium in oral mucosa and dental pulp. The enzyme profile of mast cells in oral tissues resembles that of skin, with most mast cells expressing the serine proteases tryptase and chymase. Mast cells in oral tissues contain the pro-inflammatory cytokine tumour necrosis factor-alpha in their granules, and release of this promotes leukocyte infiltration during evolving inflammation in several conditions, including lichen planus, gingivitis, pulpitis, and periapical inflammation, through induction of endothelial-leukocyte adhesion molecules. Mast cell synthesis and release of other mediators exerts potent immunoregulatory effects on other cell types, while several T-lymphocyte-derived cytokines influence mast cell migration and mediator release. Mast cell proteases may contribute to alterations in basement membranes in inflammation in the oral cavity, such as the disruptions that allow cytotoxic lymphocytes to enter the epithelium in oral lichen planus. A close relationship exists among mast cells, neural elements, and laminin, and this explains the preferential distribution of mast cells in tissues. Mast cells are responsive to neuropeptides and, through their interaction with neural elements, form a neural immune network with Langerhans cells in mucosal tissues. This facilitates mast cell degranulation in response to a range of immunological and non-immunological stimuli. Because mast cells play a pivotal role in inflammation, therapies that target mast cell functions could have value in the treatment of chronic inflammatory disorders in the oral cavity.
Resumo:
Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADPsensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors.
Resumo:
Renal cell tumors (RCTs) are the most lethal of the common urological cancers. The widespread use of imaging entailed an increased detection of small renal masses, emphasizing the need for accurate distinction between benign and malignant RCTs, which is critical for adequate therapeutic management. Histone methylation has been implicated in renal tumorigenesis, but its potential clinical value as RCT biomarker remains mostly unexplored. Hence, the main goal of this study was to identify differentially expressed histone methyltransferases (HMTs) and histone demethylases (HDMs) that might prove useful for RCT diagnosis and prognostication, emphasizing the discrimination between oncocytoma (a benign tumor) and renal cell carcinoma (RCC), especially the chromophobe subtype (chRCC). We found that the expression levels of three genes-SMYD2, SETD3, and NO66-was significantly altered in a set of RCTs, which was further validated in a large independent cohort. Higher expression levels were found in RCTs compared to normal renal tissues (RNTs) and in chRCCs comparatively to oncocytomas. SMYD2 and SETD3 mRNA levels correlated with protein expression assessed by immunohistochemistry. SMYD2 transcript levels discriminated RCTs from RNT, with 82.1% sensitivity and 100% specificity (AUC=0.959), and distinguished chRCCs from oncocytomas, with 71.0% sensitivity and 73.3% specificity (AUC: 0.784). Low expression levels of SMYD2, SETD3, and NO66 were significantly associated with shorter disease-specific and disease-free survival, especially in patients with non-organ confined tumors. We conclude that expression of selected HMTs and HDMs might constitute novel biomarkers to assist in RCT diagnosis and assessment of tumor aggressiveness.
Resumo:
During the schistosomiasis infection there is a [quot ]dance of the cells[quot ], varying from site to site and related to the time of infection. 1 - Eosinophil levels exhibit a bimodal pattern, with the first peak related to the egg deposition and maturation and increased Kupfferian hyperplasia; the second peak precedes the death of some adult worms; 2 - The peritoneal eosinophilic levels are inversely proportional to the blood eosinophilic levels; 3 - Eosinopoiesis in the bone marrow begins at day 40, reaching the highest levels at day 50 and coincides with hepatic eosinophilic and neutrophilic metaplasia; 4 - Peritoneal mast cell levels present a bimodal pattern similar to the blood eosinophils, and inverse to the peritoneal eosinophils. They also show a cyclic behaviour within the hepatic and intestinal granulomas. Integral analysis of the events related to the eosinophils in the blood, bone marrow, peritoneal cavity and hepatic and intestinal granulomas allows the detection of two important eosinophilic phases: the first is due to mobilization and redistribution of the marginal pool and the second originates from eosinophilic production in the bone marrow and liver. The productive phase is characterized by an increase in the number of eosinophils and monocyte/macrophages, and a decrease in neutrophils and stabilization of megakariocytes and erithroid lineages.
Resumo:
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.
Resumo:
Previous studies in our laboratory have shown that DBA/2 mice injected i.p. with syngeneic P815 tumor cells transfected with the HLA-CW3 gene (P815-CW3) showed a dramatic expansion of activated CD8+CD62L- T cells expressing exclusively the Vbeta10 segment. We have used this model to study the regulatory mechanisms involved in the development of the CW3-specific CD8+ response, with respect to different routes of immunization. Whereas both intradermal (i.d.) and i.p. immunization of DBA/2 mice with P815-CW3 cells led to a strong expansion of CD8+CD62L-Vbeta10+ cells, only the i.d. route allowed this expansion after immunization with P815 cells transfected with a minigene coding for the antigenic epitope CW3 170-179 (P815 miniCW3). Furthermore, depletion of CD4+ T cells in vivo completely abolished the specific response of CD8+CD62L-Vbeta10+ cells and prevented the rejection of P815-CW3 tumor cells injected i.p., whereas it did not affect CD8S+CD62L-Vbeta10+ cell expansion after i.d. immunization with either P815-CW3 or P815 miniCW3. Finally, the CW3-specific CD8+ memory response was identical whether or not CD4+ T cells were depleted during the primary response. Collectively, these results suggest that the CD8+ T cell response to P815-CW3 tumor cells injected i.p. is strictly dependent upon recognition of a helper epitope by CD4+ T cells, whereas no such requirement is observed for i.d. injection.
Resumo:
The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.
Resumo:
We previously reported that alloxan-induced diabetes results in reduction in the number and reactivity of mast cells at different body sites. In this study, the influence of diabetes on thymic mast cells was investigated. Thymuses from diabetic rats showed marked alterations including shrinkage, thymocyte depletion, and increase in the extracellular matrix network, as compared to those profiles seen in normal animals. Nevertheless, we noted that the number and reactivity of mast cells remained unchanged. These findings indicate that although diabetes leads to critical alterations in the thymus, the local mast cell population is refractory to its effect. This suggests that thymic mast cells are under a different regulation as compared to those located in other tissues.
Resumo:
Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.
Resumo:
BACKGROUND: In contrast to wild type, interleukin-10-deficient (IL-10(-/-)) mice are able to clear Helicobacter infection. In this study, we investigated the immune response of IL-10(-/-) mice leading to the reduction of Helicobacter infection. MATERIALS AND METHODS: We characterized the immune responses of Helicobacter felis-infected IL-10(-/-) mice by studying the systemic antibody and cellular responses toward Helicobacter. We investigated the role of CD4(+) T cells in the Helicobacter clearance by injecting H. felis-infected IL-10(-/-) mice with anti-CD4 depleting antibodies. To examine the role of mast cells in Helicobacter clearance, we constructed and infected mast cells and IL-10 double-deficient mice. RESULTS: Reduction of Helicobacter infection in IL-10(-/-) mice is associated with strong humoral (fivefold higher serum antiurease antibody titers were measured in IL-10(-/-) in comparison to wild-type mice, p < .008) and cellular (urease-stimulated splenic CD4(+) T cells isolated from infected IL-10(-/-) mice produce 150-fold more interferon-gamma in comparison to wild-type counterparts, p < .008) immune responses directed toward Helicobacter. Depletion of CD4(+) cells from Helicobacter-infected IL-10(-/-) mice lead to the loss of bacterial clearance (rapid urease tests are threefold higher in CD4(+) depleted IL-10(-/-) in comparison to nondepleted IL-10(-/-) mice, p < .02). Mast cell IL-10(-/-) double-deficient mice clear H. felis infection, indicating that mast cells are unnecessary for the bacterial eradication in IL-10(-/-) mice. CONCLUSION: Taken together, these results suggest that CD4(+) cells are required for Helicobacter clearance in IL-10(-/-) mice. This reduction of Helicobacter infection is, however, not dependent on the mast cell population.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
BACKGROUND: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. METHODS: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. RESULTS: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. CONCLUSIONS: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines.