999 resultados para Marine oxygen isotope stages (MIS)
Resumo:
This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.
Resumo:
We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.
Resumo:
Presently, the intermediate depths of the North Atlantic Ocean are occupied by a great lens of warm, saline water whose source is the Mediterranean Sea. This water flows both westward and northward, finally entering the Norwegian Sea where it may contribute to the formation of North Atlantic Deep Water. The Late Neogene history of Mediterranean Outflow in the Atlantic can be monitored at DSDP-IPOD Site 548 on the continental slope Southwest of Ireland using benthic Foraminifera oxygen isotope values. Isotopic data from 154 samples indicate that Mediterranean water was absent from the mid-depth North Atlantic from 3.4 to 3.2 Ma ago. However, at about 2.9 Ma ago the isotopic values at Site 548 diverge from those recorded from the deep North Atlantic and they can be interpreted to indicate the appearance of a new water mass, possibly Mediterranean water, in the North Atlantic water column. This appearance may be related to climatic changes that occurred around the Mediterranean Basin at about 2.9 Ma ago. The analysis of 189 samples for grain-size distributions shows that a significant increase in the silt-size fraction occurs at the same level that isotopic analysis indicates a change in bottom waters at Site 548. The grainsize data support the hypothesis that mid-depth water-mass changes occurred at about 2.9 Ma ago.
Resumo:
Recovery from the end-Permian mass extinction is frequently described as delayed, with complex ecological communities typically not found in the fossil record until the Middle Triassic epoch. However, the taxonomic diversity of a number of marine groups, ranging from ammonoids to benthic foraminifera, peaked rapidly in the Early Triassic. These variations in biodiversity occur amidst pronounced excursions in the carbon isotope record, which are compatible with episodes of massive CO2 outgassing from the Siberian Large Igneous Province. Here we present a high-resolution Early Triassic temperature record based on the oxygen isotope composition of pristine apatite from fossil conodonts. Our reconstruction shows that the beginning of the Smithian substage of the Early Triassic was marked by a cooler climate, followed by an interval of warmth lasting until the Spathian substage boundary. Cooler conditions resumed in the Spathian. We find the greatest increases in taxonomic diversity during the cooler phases of the early Smithian and early Spathian. In contrast, a period of extreme warmth in the middle and late Smithian was associated with floral ecological change and high faunal taxonomic turnover in the ocean. We suggest that climate upheaval and carbon-cycle perturbations due to volcanic outgassing were important drivers of Early Triassic biotic recovery.
Stable oxygen isotope record and relative abundances of planktonic foraminifera of ODP Hole 117-728A
Resumo:
High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.
Resumo:
Carbon cycling is an important but poorly understood process on passive continental margins. In this study, we use the ionic and stable isotopic composition of interstitial waters and the petrology, mineralogy, and stable isotopic composition of authigenic carbonates collected from Ocean Drilling Program (ODP) Leg 174A (Sites 1071 and 1072) to constrain the origin of the carbonates and the evolution of methane on the outer New Jersey shelf. The pore fluids of the New Jersey continental shelf are characterized by (1) a fresh-brackish water plume, and (2) organic matter degradation reactions, which proceed through sulfate reduction. However, only minor methanogenesis occurs. The oxygen isotopic composition of the pore fluids supports a meteoric origin of the low salinity fluids. Authigenic carbonates are found in nodules, thin (~1-cm) layers, and carbonate cemented pavements. Siderite is the most common authigenic carbonate, followed by dolomite and calcite. The oxygen isotopic composition of the authigenic carbonates, i.e. 1.3-6.5 per mil PeeDee Belemnite (PDB), indicates an origin in marine pore fluids. The carbon isotopic composition of dolomite cements range from -16.4 to -8.8 per mil PDB, consistent with formation within the zone of sulfate reduction. Siderite d13C values show a greater range (-17.67-16.4 per mil), but are largely positive (mean=2.8 per mil) and are interpreted to have formed throughout the zone of methanogenesis. In contrast, calcite d13C values are highly negative (as low as -41.7 per mil)and must have formed from waters with a large component of dissolved inorganic carbon derived from methane oxidation. Pore water data show that despite complete sulfate reduction, methanogenesis appears not to be an important process presently occurring in the upper 400 m of the outer New Jersey shelf. In contrast, the carbon isotopic composition of the siderites and calcites document an active methanogenic zone during their formation. The methane may have been either oxidized or vented from shelf sediments, perhaps during sea-level fluctuations. If this unaccounted and variable methane flux is an areally important process during Neogene sea-level fluctuations, then it likely plays an important role in long-term carbon cycling on passive continental margins
Resumo:
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral delta18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly delta18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater delta18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater delta18O and salinity were observed. The two parameters were related to each other by the equation delta18O Seawater (per mil, VSMOW) = 0.281 * Salinity - 9.14. The high-resolution coral delta18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater delta18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral delta18O calibrations against the in situ measurements show that temperature (T) is related to coral delta18O (delta c) and seawater delta18O (delta w) by the equation T (°C) = -5.38 (delta c - delta w) -1.08. Our results demonstrate that coral delta18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater delta18O to this proxy, which could be ignored.
Stable carbon and oxygen isotope ratios across the Cretaceous/Tertiary boundray on the Walvish Ridge
Resumo:
The isotopic composition and diversity of nannofossils were studied in cores from the Deep Sea Drilling Project (DSDP) Sites 525A, 527, 528, and 529 from the Walvis Ridge, South Atlantic to better understand the changes which occurred across the Cretaceous/Tertiary boundary (K/T boundary). The stratigraphic range of the samples is from the Arkhangelskiella cymbiformis Zone in the Maastrichtian to the Heliolithus kleinpelli Zone in the Danian. Nannofossil diversity was high (Shannon-Weaver diversity index, 'H= 2.5-3) in the late Cretaceous, but decreased sharply (H c. 1 ) across the K/T boundary. The delta13C values also decrease across the K/T boundary at the four sites, suggesting a reduction in surface productivity in the South Atlantic concomitant with the reduction in diversity. During the Danian, nannofossil diversity and delta13C show some recovery approximately 500-700 k.y. after the boundary event. However, not until 2.5 Ma after the boundary event did diversity become constant. Diversity values similar to those for the late Cretaceous were not attained again in the early Paleocene interval studied. Carbon isotopic compositions similar to those from the Cretaceous were not attained until 4.5 Ma after the K/T event.
Resumo:
The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.
Resumo:
Upper Pliocene and Pleistocene abundance fluctuations of the radiolarian Cycladophora davisiana (Ehrenberg) davisiana (Petrushevskaya) are documented from North Atlantic (Site 609) and Labrador Sea (Site 646B) to provide the first long-term correlation of its abundance fluctuations to oxygen isotope stages 1-114. Also examined are temporal and regional fluctuations in abundances C. d. davisiana and the global dispersal routes of the species. The first occurrence of C. d. davisiana in the eastern North Atlantic Ocean (Site 609) occurred between 2.586 and 2.435 Ma (oxygen isotope stages 109.66-102.19). During the early Matuyama Chron, prior to oxygen isotope stage 63, C. d. davisiana abundances were less than 1% and never greater than 12%, while abundances of greater than 5% are found in stages 65.71-73, 74, and 83-84. The initial major abundance peak (35.7%) of C. d. davisiana was noted near the stage 63/62 boundary. Abundance peaks of greater than 15%, between oxygen isotope stages 35 and 63, are limited to stages 63.02, 58.07, 55.07-54.26, and 50.76-50.22. These represent the only such abundance peaks detected during the first c. 1.5 million years of the species within the North Atlantic. The character of C. d. davisiana abundance fluctuations in Site 609 changes after oxygen isotope stage 35; average abundances are greater (7.7% vs. 4.3%) and abundance maxima of more than 15% are more frequent. Many, but not all, peak abundances of C. d. davisiana occur in glacial stages (e.g., 8, 14, 18, 20, 26, 30, 34, 50, 54, and 58). Increased abundances of the species are also noted in weak interglacial stages (e.g., stages 3, 23, 39, and 41), and significant cool periods of robust interglacial periods (e.g., late stage 11). Sample spacing is adequate in some stages to note some rapid changes in abundance near stage transitions (e.g., stages 4/5, 25/26, 62/63). The sample density in Holes 609 and 611 and the upper portion of 646B is sufficient to detect a synchroneity of many abundance maxima and minima among sites. Some abundance peaks are undetected in one or more of the two holes, warranting further sampling to obtain a more accurate record of regional abundance fluctuations. Prior to stage 36, few ages of Hole 611 peaks are the same as those in the more precisely dated Hole 609. The highest abundances of C. d. davisiana were noted in Labrador Sea Hole 646B where the earliest known occurrence of the species is documented (3.08-2.99 Ma). C. d. davisiana is inferred to have evolved in the Labrador Sea (or Arctic), and migrated next through the Arctic into the North Pacific (2.62-2.64 Ma, stage 114) before migrating into the Norwegian Sea (2.63-2.53 Ma) and North Atlantic (2.59-2.44 Ma, stages 109-102). Additional migration of C. d. dauisiana into the southern South Atlantic (Site 704) occurred much later (2.06 Ma, stage 83).
Resumo:
This study investigates changes in the upper water column hydrography at Site 851 of the eastern tropical Pacific Ocean since the late Pliocene, using the oxygen and carbon isotopic composition of three species of planktonic foraminifers, each calcifying at different depths in the photic zone. The upper ocean seasonal hydrography in this region responds to the seasonally changing trade winds and thus is expected to respond to past changes in trade winds. One major change occurs at about 1.5 Ma, when the thermocline adjusts from a deep position to a shallower position. The thermocline remains in a relatively shallow position throughout the record up to recent time, with slight variations occurring synchronously with glacial/interglacial stages. In glacials, SSTs are probably a few degrees cooler and the thermocline is slightly deeper. From our knowledge of seasonal and interannual adjustments of the thermocline in this location, a deeper thermocline might be interpreted as either a decrease in the strength of the Equatorial Undercurrent (EUC) that results from lower mean wind strength or an increase in the Equatorial Countercurrent (ECC), which results from an increase in the strength of the southeasterly trade winds. A major shift from higher to lower carbon isotope values occurred at about 1.9 Ma, marking a transition to reduced planktonic-benthic d13C differences after 1.9 Ma. The carbon isotopic data indicate that changes in the carbon isotopic composition of intermediate upwelling water occurs at higher frequencies than the glacial/interglacial changes in ice volume.
Resumo:
Paleoceanographic variability at southern high latitude Ocean Drilling Program (ODP) Site 747 was investigated in this study through the interval which spans the Middle Miocene Climate Transition (MMCT). Between 15.0 and 12.2 million years ago (Ma), foraminiferal d18O records derived from both benthic (Cibicidoides spp.) and planktonic taxa (Globorotalia praescitula and Globigerina bulloides) reveal a history of changes in water column thermal and salinity structure and a strong imprint of seasonality. Prior to the MMCT, in the interval between 14.35 and 13.9 Ma, G. bulloides displays relatively high d18O values similar to those of G. praescitula, interpreted to indicate weakening of the thermocline and/or increased seasonality with cooler early-spring and/or late-fall temperatures. Following this interval, G. bulloidesd18O values diverge significantly from benthic and G. praescitula values, with G. bulloides values remaining relatively low for at least 600 kyr following the benthic foraminiferal d18O shift during the MMCT at ~13.9 Ma. This divergence in d18O records occurs in direct association with the Mi3 cooling and glaciation event and may suggest: (1) a strengthening of the vertical temperature gradient, with greater cooling of deep waters than surface waters, (2) changes in the depth habitat of G. bulloides, (3) changes in the dominant season of G. bulloides calcification, (4) modification of surface-water d18O values in association with enhanced sea-ice formation, (5) increased surface-water carbonate ion concentration, and/or (6) a significant decrease in surface-water salinity across the MMCT. The first of these possible scenarios is not likely, particularly in light of recent Mg/Ca evidence for significant surface-water cooling in the Southern Ocean associated with the MMCT. Of the remaining possibilities, we favor a change in surface salinity to explain the observed trends in d18O values and hypothesize that surface salinity may have decreased by up to 2 salinity units at ~13.9 Ma. In this scenario, the development of a lower-salinity Antarctic surface layer coincided with regional cooling of both surface and deep waters of the Southern Ocean during the Mi3 glaciation of East Antarctica, and contributed into the dominance of Neogloboquadrina spp. between 13.8 and 13.2 Ma. Additionally, the distinct patterns observed in planktonic foraminiferal d18O records spanning the MMCT correspond with changes in the vertical d13C gradient between planktonic and benthic foraminiferal records and major changes in planktonic foraminiferal assemblages at Site 747, providing further evidence of the environmental significance of this climatic transition.
Resumo:
Oxygen isotopic (d18O) climatic stratigraphy and radiocarbon chronology, at high resolution, have been used to establish an age model for Ocean Drilling Program Hole 1017E, a continuous 25-m sequence of hemipelagic sediments from the continental slope (956 m water depth), east of Point Arguella, Southern California. The upper part of Hole 1017E from ~33 ka (7.445 mbsf) was dated using 13 calendar-corrected radiocarbon ages of mixed planktonic foraminiferal assemblages. Benthic oxygen isotopic stratigraphy records a continuous 130-k.y. sequence ranging from marine isotope Stage 6 to the present day. The benthic d18O curve, representing the last two interglacial and glacial cycles, closely resembles the well-dated, deep-sea reference sequence, providing a detailed chronologic framework. Sedimentation rates remained relatively constant throughout the sequence at ~18 cm/k.y. and were sufficiently rapid to provide considerable potential for high-resolution paleoceanographic/paleoclimatic investigations. Planktonic foraminiferal oxygen isotopic stratigraphy based on the surface-dwelling form Globigerina bulloides defines an almost complete sequence of interstadial/stadial oscillations (Dansgaard/Oeschger cycles [D/O]). Combined use of radiocarbon chronology, deep-sea oxygen isotopic datums, and visual pattern matching has enabled us to identify the sequence of D/O cycles as described for the Greenland (GRIP2) ice core. This has strengthened the stratigraphic framework for the last 60 k.y. in the sequence as a basis for further paleoenvironmental investigations.
Resumo:
The carbonate shell of the bivalve Arctica islandica has been recognized, for more than a decade, as a potentially important marine geochemical biorecorder owing to this species' great longevity (200+ years) and wide geographic distribution throughout the northern North Atlantic Ocean, a region vital to global climate and ocean circulation. However, until now this potential has not been realized owing to the difficulty of precisely sampling the shell of this slow growing species. Using newly available automated microsampling techniques combined with micromass stable isotope mass spectrometry, a stable oxygen isotope record (1956-1957 and 1961-1970) has been obtained from a live-captured, 38-year-old A. islandica specimen collected near the former position of the Nantucket Shoals Lightship (41°N. 69°W). The shell's delta18O signal is compared with an expected signal derived from ambient bottom temperature and salinity data recorded at the lightship for the same period. The results show that A islandica's delta18O record (1) is in phase with its growth banding, confirming the annual periodicity of this species' growth bands, (2) is in oxygen isotopic equilibrium with the ambient seawater, (3) shows a consistent shell growth shutdown temperature of ~6°C. which translates into an ~8-month (May-December) shell growth period at this location, and (4) records the ambient bottom temperature with a precision of ~ +/-1.2°C. These results add important information on the life history of this commercially important shellfish species and demonstrate that A. islandica shells can be used to reconstruct inter- and intra-annual records of the continental shelf bottom temperature.
Resumo:
Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.