983 resultados para Maps -- Digital
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Providence, Rhode Island quadrangle which includes areas in the state of Massachusetts. The survey dates (ground condition) of the original paper map are 1885 and 1887, the edition date is February, 1894 and this map has a reprint date of October, 1911. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Webster, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886-87, the edition date is July, 1892 and this map has a reprint date of 1943. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Springfield, Massachusetts quadrangle. The survey dates (ground condition) of the original paper map are 1886 and 1887 and the edition date is 1889. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sheffield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1884-1885, the edition date is October, 1897 and this map has a reprint date of March, 1908. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Sandisfield, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Salem, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886, the edition date is October, 1893 and this map has a reprint date of December, 1897. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Provincetown, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is July, 1889 and this map has a reprint date of January, 1900. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Taunton, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, the edition date is September, 1893 and this map has a reprint date of 1940. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
O contexto tecnológico em que vivemos é uma realidade. E a tendência é para ser assim também no futuro. Cada vez mais. É o caso das representações de locais e entidades em mapas digitais na web. Na visão de Crocker (2014), esta tendência é ainda mais acentuada, no âmbito das aplicações móveis, como mostram as mais diversas location-based applications. No setor do desporto e da respetiva gestão nem sempre foi fácil desenvolver aplicações, recorrendo a este tipo de representações espaciais. A tecnologia não era fácil e o know-how não era adequadamente qualificado. Mas, as empresas fornecedoras de tecnologia geoespacial simplificaram o desenvolvimento de aplicações web nesta área, através da utilização de application programming interfaces (API). Como refere Svennerberg (2010), estas API’s servem de interface entre um serviço proporcionado por uma empresa, caso da Google Maps (2013) e uma aplicação web ou móvel que utiliza esses serviços. Foi com este objetivo que desenvolvemos uma aplicação web, utilizando as metodologias próprias neste domínio, como a framework de Zachman (2009), tal como foi originalmente adaptada por Whitten e Bentley (2005), onde um dos módulos é precisamente a representação de espaços desportivos, recorrendo à utilização dos serviços da Google Maps. Para além disso, toda a aplicação é suportada numa abordagem Model-View-Control (MVC). Para conseguir representar as instalações desportivas num mapa, criámos uma base de dados MySQL, com dados de longitude e latitude, de cada instalação desportiva. Através de JavaScript criou-se o mapa propriamente dito, indicando o tipo (mapa de estradas, satélite ou street view) e as respetivas opções (nível de zoom, alinhamento, controlo de interface e posicionamente, entre muitas outras opções). O passo seguinte consistiu em passar os dados para o frontend da aplicação web. Para isso, recorreu-se à integração do PHP com as livrarias externas de código JavaSrcipt, criadas especificamente para o efeito (caso da MarkerManager). A implementação destas funcionalidades permite georeferenciar todos os tipos e géneros de espaços desportivos de um concelho, região ou País. Obteve-se ainda know-how, background e massa crítica, para o desenvolvimento de novas funcionalidades. A sua utilização em dispositivos móveis é outra das possibilidades atualmente já em desenvolvimento.
Resumo:
"October 1981."
Resumo:
There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
In this paper we propose an approach for cost-effective employing of semantic technologies to improve the efficiency of searching and browsing of digital artwork collections. It is based on a semi-automatic creation of a Topic Map-based virtual art gallery portal by using existing Topic Maps tools. Such a ‘cheap’ solution could enable small art museums or art-related educational programs that lack sufficient funding for software development and publication infrastructure to take advantage of the emerging semantic technologies. The proposed approach has been used for creating the WSSU Diggs Gallery Portal.
Resumo:
People manage a spectrum of identities in cyber domains. Profiling individuals and assigning them to distinct groups or classes have potential applications in targeted services, online fraud detection, extensive social sorting, and cyber-security. This paper presents the Uncertainty of Identity Toolset, a framework for the identification and profiling of users from their social media accounts and e-mail addresses. More specifically, in this paper we discuss the design and implementation of two tools of the framework. The Twitter Geographic Profiler tool builds a map of the ethno-cultural communities of a person's friends on Twitter social media service. The E-mail Address Profiler tool identifies the probable identities of individuals from their e-mail addresses and maps their geographical distribution across the UK. To this end, this paper presents a framework for profiling the digital traces of individuals.