968 resultados para Mammalian auditory brainstem
Resumo:
Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.
Resumo:
This study examined spoken-word recognition in children with specific language impairment (SLI) and normally developing children matched separately for age and receptive language ability. Accuracy and reaction times on an auditory lexical decision task were compared. Children with SLI were less accurate than both control groups. Two subgroups of children with SLI, distinguished by performance accuracy only, were identified. One group performed within normal limits, while a second group was significantly less accurate. Children with SLI were not slower than the age-matched controls or language-matched controls. Further, the time taken to detect an auditory signal, make a decision, or initiate a verbal response did not account for the differences between the groups. The findings are interpreted as evidence for language-appropriate processing skills acting upon imprecise or underspecified stored representations.
Resumo:
The inferior colliculus (IC) is primarily involved in the processing of auditory information, but it is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Functional evidence relating the IC to motor behavior derives from experiments showing that activation of the IC by electrical stimulation or excitatory amino acid microinjection causes freezing, escape-like behavior, and immobility. However, the nature of this immobility is still unclear. The present study examined the influence of excitatory amino acid-mediated mechanisms in the IC on the catalepsy induced by the dopamine receptor blocker haloperidol administered systemically (1 or 0.5 mg/kg) in rats. Haloperidol-induced catalepsy was challenged with prior intracollicular microinjections of glutamate NMDA receptor antagonists, MK-801 (15 or 30 mmol/0.5 mu l) and AP7 (10 or 20 nmol/0.5 mu l), or of the NMDA receptor agonist N-methyl-D-aspartate (NMDA, 20 or 30 nmol/0.5 mu l). The results showed that intracollicular microinjection of MK-801 and AP7 previous to systemic injections of haloperidol significantly attenuated the catalepsy, as indicated by a reduced latency to step down from a horizontal bar. Accordingly, intracollicular microinjection of NMDA increased the latency to step down the bar. These findings suggest that glutamate-mediated mechanisms in the neural circuits at the IC level influence haloperidol-induced catalepsy and participate in the regulation of motor activity. (C) 2010 Published by Elsevier B.V.
Resumo:
wPrey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The diagnosis of a catecholamine-secreting pheochromocytoma is always suggested by occurrence of severe and symptomatic paroxysmal hypertension. However, in most patients this diagnosis is not confirmed, despite extensive investigation.(1) Traditionally, besides pheochromocytoma, the differential diagnosis in cases of paroxysmal hypertension associated with catecholamine excess should include cocaine use, antiparkinsonian drugs, obstructive sleep apnoea and baroreflex failure.(2) Nonetheless, when the paroxysmal hypertension is associated not only with catecholamine excess, but also with neurologic signs, a very rare differential diagnosis should also be considered: a brainstem tumour mimicking pheochromocytoma.(3-5)
Resumo:
1. Evidence for a 'putative beta(4)-adrenoceptor' originated over 20 years ago when cardiostimulant effects were observed to nonconventional partial agonists, These agonists were originally described as beta(1)- and beta(2)-adrenoceptor antagonists; however, they cause cardiostimulant effects at much higher concentrations than those required to block beta(1)- and beta(2)-adrenoceptors. Cardiostimulant effects of non-conventional partial agonists have been observed in mouse, rat, guinea-pig, cat, ferret and human heart tissues, 2. The receptor is expressed in several heart regions, including the sinoatrial node, atrium and ventricle, 3. The receptor is resistant to blockade by most antagonists that possess high affinity for beta(1)- and beta(2)- adrenoceptors, but is blocked with moderate affinity by (-)-bupranolol and CGP 20712A. 4. The receptor is pharmacologically distinct from the beta(3)-adrenoceptor. Micromolar concentrations of beta(3)-adrenoceptor agonists have no agonist or blocking activity, The receptor is also resistant to blockade by a beta(3)-adrenoceptor-selective antagonist. 5. The receptor mediates increases in cAMP levels and cAMP-dependent protein kinase (PK) A activity in cardiac tissues. Phosphodiesterase inhibition potentiates the positive chronotropic and inotropic effects of non-conventional partial agonists. 6. The receptor mediates hastening of atrial and ventricular relaxation, which is consistent with involvement of a cAMP-dependent pathway. 7. The non-conventional partial agonist (-)-[H-3]-CGP 12177A labels the cardiac putative beta(4)-adrenoceptor, Non-conventional partial agonists compete for binding with affinities that are closely similar to their agonist potencies, Catecholamines compete for binding in a stereoselective manner with a rank order of affinity of (-)-R0363 > (-)-isoprenaline > (-)-noradrenaline greater than or equal to (-)-adrenaline much greater than (-)-isoprenaline, suggesting that catecholamines can interact with the receptor. 8. The putative beta(4)-adrenoceptor appears to be coupled to the G(s)-adenylyl cyclase system, which could serve as a guide to its future cloning, Activation of the receptor may plausibly improve diastolic function but could also mediate arrhythmias.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.
Resumo:
Long latency auditory evoked potentials (LLAEP) alterations in individuals with tinnitus are suggestive of dysfunction in the central auditory pathways at a cortical level. Aim: to characterize the LLAEP in individuals with and without tinnitus exposed to occupational noise. Method: Cross-sectional contemporary cohort, prospective study. Sixty subjects exposed to occupational noise, ranging in age from 29 to 50 years underwent LLAEP assessment; 30 of them had tinnitus complaint and 30 did not have tinnitus. Results: we observed significant statistical difference regarding the mean values of latencies of waves N1 (p<0.001), P2 (p=0.002) and P300 (p=0.039) when we compared individuals with and without tinnitus. In individuals with tinnitus we also noticed a greater number of altered results concerning components N1 (60%) and P2 (66.7%), although only component P2 presented significant statistical difference (p=0.010). For the LLAEP, the latency increase was the only type of alteration found (p=1.000). We found a greater association between bilateral tinnitus and bilateral alteration for all components N1(73%), P2(73%) and P300(50%). Conclusion: It is relevant to study LLAEP in individuals with tinnitus exposed to high occupational sound pressure levels.
Resumo:
Our aim was to analyze the influence of subtle cochlear damage on temporal auditory resolution in tinnitus patients. Forty-eight subjects (hearing threshold <= 25 dB HL) were assigned to one of two experimental groups: 28 without auditory complaints (mean age, 28.8 years) and 20 with tinnitus (mean age, 33.5 years). We analyzed distortion product otoacoustic emission growth functions (by threshold, slope, and estimated amplitude), extended high-frequency thresholds, and the Gaps-in-Noise test. There were differences between the groups, principally in the extended high-frequency thresholds and the Gaps-in-Noise test results. Our findings suggest that subtle peripheral hearing impairment affects temporal resolution in tinnitus, even when pure-tone thresholds as conventionally measured appear normal. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
According to data from the Brazilian Institute of Geography and Statistics, the elderly population grew 47.8% in the last decade in Brazil. A portion of this population has severe and/or profound hearing loss and do not benefit from conventional hearing aids. Thus, the use of cochlear implant is required. Aim: To analyze the benefits of cochlear implants in the elderly based on the comparison of primary auditory thresholds before and after the operation, discrimination of sentences in speech and in talking on the telephone. Methodology: Retrospective cohort study, analyzing medical records from patients aged over 60 years, users of cochlear implant for at least 1 year. Results: Fourteen medical records were analyzed. Mean age of patients was 63.07 years. The mean pure tone thresholds between 500Hz, 1kHz, 2kHz and 4kHz before the implantation was 113dBHL. None of the patients, before operation, could discriminate sentences in open sets and only 3 scored 17% in closed sets sentence recognition. After one year of implantation, the mean sound field thresholds reached 34dBHL, and open set sentences recognition of 93.57%, while 71% of the patients had become able to have a conversation on the telephone. Conclusion: The elderly users of cochlear implant showed important outcomes, with significant improvement in understanding in the open set and in using the telephone.
Resumo:
Parkinson`s disease (PD) is considered a multisystem disorder involving dopaminergic, noradrenergic. serotoninergic. and cholinergic systems, characterized by motor and non-motor symptoms. The causes of the non-motor symptoms in PD are multifactorial and unlikely to be explained by single lesions However, several evidence link them to damage of specific brainstem nuclei Numerous brainstem nuclei are engaged in fundamental homeostatic mechanisms, including gastrointestinal regulation, pain perception, mood control, and sleep-wake cycles In addition, these nuclei are locally interconnected in a complex manner and are subject to supraspinal control. The objective of this review is to provide a better overview of the current knowledge about the consequences of the involvement of specific brainstem nuclei to the most prevalent non-motor symptoms occurring in PD The multidisciplinary efforts of research directed to these non-nigral brainstem nuclei, in addition to the topographical and chronological spread of the disease - especially in the prodromal stages of PD. are discussed (C) 2009 Elsevier B V. All rights reserved
Resumo:
OBJECTIVE: To study the microanatomy of the brainstem related to the different safe entry zones used to approach intrinsic brainstem lesions. METHODS: Ten formalin-fixed and frozen brainstem specimens (20 sides) were analyzed. The white fiber dissection technique was used to study the intrinsic microsurgical anatomy as related to safe entry zones on the brainstem surface. Three anatomic landmarks on the anterolateral brainstem surface were selected: lateral mesencephalic sulcus, peritrigeminal area, and olivary body. Ten other specimens were used to study the axial sections of the inferior olivary nucleus. The clinical application of these anatomic nuances is presented. RESULTS: The lateral mesencephalic sulcus has a length of 7.4 to 13.3 mm (mean, 9.6 mm) and can be dissected safely in depths up to 4.9 to 11.7 mm (mean, 8.02 mm). In the peritrigeminal area, the distance of the fifth cranial nerve to the pyramidal tract is 3.1 to 5.7 mm (mean, 4.64 mm). The dissection may be performed 9.5 to 13.1 mm (mean, 11.2 mm) deeper, to the nucleus of the fifth cranial nerve. The inferior olivary nucleus provides safe access to lesions located up to 4.7 to 6.9 mm (mean, 5.52 mm) in the anterolateral aspect of the medulla. Clinical results confirm that these entry zones constitute surgical routes through which the brainstem may be safely approached. CONCLUSION: The white fiber dissection technique is a valuable tool for understanding the three-dimensional disposition of the anatomic structures. The lateral mesencephalic sulcus, the peritrigeminal area, and the inferior olivary nucleus provide surgical spaces and delineate the relatively safe alleys where the brainstem can be approached without injuring important neural structures.
Resumo:
Dopamine (DA) is a neuromodulator in the brainstem involved with the generation and modulation of the autonomic and respiratory activities. Here we evaluated the effect of microinjection of DA intracistema magna (icm) or into the caudal nucleus tractus solitarii (cNTS) on the baseline cardiovascular and respiratory parameters and on the cardiovascular and respiratory responses to chemoreflex activation in awake rats. Guide cannulas were implanted in cisterna magna or cNTS and femoral artery and vein were catheterized. Respiratory frequency (f(R)) was measured by whole-body plethysmography. Chemoreflex was activated with KCN (iv) before and after microinjection of DA icm or into the cNTS bilaterally while mean arterial pressure (MAP), heart rate (HR) and f(R) were recorded. Microinjection of DA icm (n = 13), but not into the cNTS (n = 8) produced a significant decrease in baseline MAP (-15 +/- 1 vs 1 +/- 1 mm Hg) and HR (-55 +/- 11 vs -11 +/- 17 bpm) in relation to control (saline with ascorbic acid, n = 9) but no significant changes in baseline f(R). Microinjection of DA icm or into the cNTS produced no significant changes in the pressor, bradycardic and tachypneic responses to chemoreflex activation. These data show that a) DA icm affects baseline cardiovascular regulation, but not baseline f(R) and autonomic and respiratory components of chemoreflex and b) DA into the cNTS does not affect either the autonomic activity to the cardiovascular system or the autonomic and respiratory responses of chemoreflex activation. (C) 2010 Elsevier B.V. All rights reserved.