992 resultados para Malignant tumour model
Resumo:
The cellular and humoral mechanisms accounting for osteolysis in skeletal metastases of malignant melanoma are uncertain. Osteoclasts, the specialised multinucleated cells that carry out bone resorption, are derived from monocyte/macrophage precursors. We isolated tumour-associated macrophages (TAMs) from metastatic (lymph node/skin) melanomas and cultured them in the presence and absence of osteoclastogenic cytokines and growth factors. The effect of tumour-derived fibroblasts and melanoma cells on osteoclast formation and resorption was also analysed. Melanoma TAMs (CD14+/CD51-) differentiated into osteoclasts (CD14-/CD51+) in the presence of receptor activator for nuclear factor kappaB ligand (RANKL) and macrophage-colony stimulating factor. Tumour-associated macrophage-osteoclast differentiation also occurred via a RANKL-independent pathway when TAMs were cultured with tumour necrosis factor-alpha and interleukin (IL)-1alpha. RT-PCR showed that fibroblasts isolated from metastatic melanomas expressed RANKL messenger RNA and the conditioned medium of cultured melanoma fibroblasts was found to be capable of inducing osteoclast formation in the absence of RANKL; this effect was inhibited by the addition of osteoprotegerin (OPG). We also found that cultured human SK-Mel-29 melanoma cells produce a soluble factor that induces osteoclast differentiation; this effect was not inhibited by OPG. Our findings indicate that TAMs in metastatic melanomas can differentiate into osteoclasts and that melanoma fibroblasts and melanoma tumour cells can induce osteoclast formation by RANKL-dependent and RANKL-independent mechanisms, respectively.
Resumo:
ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.
Resumo:
The potential health effects of inhaled engineered nanoparticles are almost unknown. To avoid and replace toxicity studies with animals, a triple cell co-culture system composed of epithelial cells, macrophages and dendritic cells was established, which simulates the most important barrier functions of the epithelial airway. Using this model, the toxic potential of titanium dioxide was assessed by measuring the production of reactive oxygen species and the release of tumour necrosis factor alpha. The intracellular localisation of titanium dioxide nanoparticles was analyzed by energy filtering transmission electron microscopy. Titanium dioxide nanoparticles were detected as single particles without membranes and in membrane-bound agglomerates. Cells incubated with titanium dioxide particles showed an elevated production of reactive oxygen species but no increase of the release of tumour necrosis factor alpha. Our in vitro model of the epithelial airway barrier offers a valuable tool to study the interaction of particles with lung cells at a nanostructural level and to investigate the toxic potential of nanoparticles.
Resumo:
Malignant uterine tumours can affect the corpus or the cervix. The endometrial carcinoma with its different histological subtypes counts for most of the malignomas of the uterine body. But the rare category of uterine sarcomas (carcinosarcomas, leiomyosarcomas as well as endometrial stromal sarcomas) also belongs to this group. Cervical cancer presents an own entitity, regarding both histology and therapeutic options. Endometrial cancer is the most common genital malignoma in Northern Europe and North America. Histologically, the endometrial cancer can be subdivided in two groups: type I is hormonal sensitive and well differentiated, type II represents an undifferenciated aggressive tumour with poor prognosis. In general, the patient is elderly. Due to the main symptom - abnormal vaginal bleeding - endometrial cancer is detected in an early stage in about 75% of all patients. First choice in therapy is stage related surgery. Follow-up schemes have not proved yet to improve survival, therefore clear guidelines are missing. National and international groups recommend regular follow-up visits to detect the early vaginal vault relapse which is curable. Cervical cancer is mainly a squamous cell carcinoma and oncogenic Human Papilloma Virus (HPV) associated. Surgery is only indicated up to stage IIA, advanced stages should be treated by radio-chemotherapy. Several studies have shown that follow-up visits can improve survival rates. Intention is the detection of the curable local relapse.
Resumo:
Autoantibodies play a key role in diagnostic laboratories as markers of autoimmune diseases. In addition to their role as markers they mediate diverse effects in vivo. Autoantibodies with protective effect have been described. Natural protective IgM autoantibodies against tumour-antigens of malignant cells or their precursors may contribute to increased survival rates of carcinoma patients. In a mouse model of systemic lupus erythematosus it has been shown that anti-dsDNA IgM autoantibodies protect from glomerular damage. In contrast, a direct pathogenic role of autoantibodies has been well established e.g. in myasthenia gravis or in Goodpasture syndrome. Similarly autoantibodies against SSA Ro52 are detrimental in neonatal lupus erythematosus with congenital heart block. Moreover, putatively protective autoantibodies may become pathogenic during the course of the disease such as the onconeuronal autoantibodies whose pathogenicity depends on their compartmentalisation. In patients with paraneoplastic syndromes tumour cells express proteins that are also naturally present in the brain. Anti-tumour autoantibodies which temporarily suppress tumour growth can provoke an autoimmune attack on neurons once having crossed the blood-brain barrier and cause specific neurological symptoms. Only a restricted number of autoantibodies are useful follow-up markers for the effectiveness of treatment in autoimmune diseases. Certain autoantibodies hold prognostic value and appear years or even decades before the diagnosis of disease such as the antimitochondrial antibodies in primary biliary cirrhosis or anti-citrullinated protein (CCP)-antibodies in rheumatoid arthritis. It is crucial to know whether the autoantibodies in question recognise linear or conformational epitopes in order to choose the appropriate detection methods. Indirect immunofluorescence microscopy remains a very useful tool for confirmation of results of commercially available immunoassays and for detection of special and rare autoantibodies that otherwise often remain undetected. Standardisation of autoimmune diagnostics is still underway and requires joint efforts by laboratories, clinicians and industry.
Resumo:
Malignant melanomas (MMs) of the parotid gland are relatively uncommon. They occur almost invariably as metastases from a primary tumour located in the region of the scalp or the mucous membranes of the nose, paranasal sinuses, or throat. Primary MMs arising in the parotid gland are extremely rare. It is assumed that they originate in the glandular tissue or in intraglandular lymph nodes. We present a case report and review of the literature on the diagnosis, treatment, and prognosis of intraparotid malignant melanoma. Diagnosis is based primarily on B-scan ultrasonography and fine-needle aspiration cytology. Patients with a cytological diagnosis of MM are further evaluated by magnetic resonance imaging and positron emission tomography and receive a thorough ear-nose-throat and dermatological examination. The treatment of choice is total parotidectomy and selective neck dissection. The effectiveness of adjuvant treatments such as radiotherapy, chemotherapy, or immunotherapy remains controversial. Patients with primary MMs of the parotid gland appear to have a better prognosis than those with parotid metastases from melanomas of the skin or mucous membranes.
Resumo:
The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.
Resumo:
Sustained growth of solid tumours can rely on both the formation of new and the co-option of existing blood vessels. Current models suggest that binding of angiopoietin-2 (Ang-2) to its endothelial Tie2 receptor prevents receptor phosphorylation, destabilizes blood vessels, and promotes vascular permeability. In contrast, binding of angiopoietin-1 (Ang-1) induces Tie2 receptor activation and supports the formation of mature blood vessels covered by pericytes. Despite the intense research to decipher the role of angiopoietins during physiological neovascularization and tumour angiogenesis, a mechanistic understanding of angiopoietin function on vascular integrity and remodelling is still incomplete. We therefore assessed the vascular morphology of two mouse mammary carcinoma xenotransplants (M6378 and M6363) which differ in their natural angiopoietin expression. M6378 displayed Ang-1 in tumour cells but no Ang-2 in tumour endothelial cells in vivo. In contrast, M6363 tumours expressed Ang-2 in the tumour vasculature, whereas no Ang-1 expression was present in tumour cells. We stably transfected M6378 mouse mammary carcinoma cells with human Ang-1 or Ang-2 and investigated the consequences on the host vasculature, including ultrastructural morphology. Interestingly, M6378/Ang-2 and M6363 tumours displayed a similar vascular morphology, with intratumoural haemorrhage and non-functional and abnormal blood vessels. Pericyte loss was prominent in these tumours and was accompanied by increased endothelial cell apoptosis. Thus, overexpression of Ang-2 converted the vascular phenotype of M6378 tumours into a phenotype similar to M6363 tumours. Our results support the hypothesis that Ang-1/Tie2 signalling is essential for vessel stabilization and endothelial cell/pericyte interaction, and suggest that Ang-2 is able to induce a switch of vascular phenotypes within tumours.
Resumo:
An 8-year-old crossbred dog was presented with a one-month history of progressive weakness, respiratory impairment and abdominal distension. Surgical exploration revealed the presence of a splenic mass that infiltrated the mesentery and was adherent to the stomach and pancreas. The mass was composed of highly cellular areas of spindle-shaped cells arranged in interlacing bundles, streams, whorls and storiform patterns (Antoni A pattern) and less cellular areas with more loosely arranged spindle to oval cells (Antoni B pattern). The majority of neoplastic cells expressed vimentin, S-100 and glial fibrillary acidic protein (GFAP), but did not express desmin, alpha-smooth muscle actin or factor VIII. These morphological and immunohistochemical findings characterized the lesion as a malignant peripheral nerve sheath tumour (PNST). Primary splenic PNST has not been documented previously in the dog.
Resumo:
Reduced glutathione (GSH) protects cells against injury by oxidative stress and maintains a range of vital functions. In vitro cell cultures have been used as experimental models to study the role of GSH in chemical toxicity in mammals; however, this approach has been rarely used with fish cells to date. The present study aimed to evaluate sensitivity and specificity of three fluorescent dyes for measuring pro-oxidant-induced changes of GSH contents in fish cell lines: monochlorobimane (mBCl), 5-chloromethylfluorescein diacetate (CMFDA) and 7-amino-4-chloromethylcoumarin (CMAC-blue). Two cell lines were studied, the EPC line established from a skin tumour of carp Cyprinus carpio, and BF-2 cells established from fins of bluegill sunfish Lepomis macrochirus. The cells were exposed for 6 and 24 h to low cytotoxic concentrations of pro-oxidants including hydrogen peroxide, paraquat (PQ), copper and the GSH synthesis inhibitor, L-buthionine-SR-sulfoximine (BSO). The results indicate moderate differences in the GSH response between EPC and BF-2 cells, but distinct differences in the magnitude of the GSH response for the four pro-oxidants. Further, the choice of GSH dye can critically affect the results, with CMFDA appearing to be less specific for GSH than mBCl and CMAC-blue.
Resumo:
Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 10(4) 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19-20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.
Resumo:
The risk of second malignant neoplasms (SMNs) following prostate radiotherapy is a concern due to the large population of survivors and decreasing age at diagnosis. It is known that parallel-opposed beam proton therapy carries a lower risk than photon IMRT. However, a comparison of SMN risk following proton and photon arc therapies has not previously been reported. The purpose of this study was to predict the ratio of excess relative risk (RRR) of SMN incidence following proton arc therapy to that after volumetric modulated arc therapy (VMAT). Additionally, we investigated the impact of margin size and the effect of risk-minimized proton beam weighting on predicted RRR. Physician-approved treatment plans were created for both modalities for three patients. Therapeutic dose was obtained with differential dose-volume histograms from the treatment planning system, and stray dose was estimated from the literature or calculated with Monte Carlo simulations. Then, various risk models were applied to the total dose. Additional treatment plans were also investigated with varying margin size and risk-minimized proton beam weighting. The mean RRR ranged from 0.74 to 0.99, depending on risk model. The additional treatment plans revealed that the RRR remained approximately constant with varying margin size, and that the predicted RRR was reduced by 12% using a risk-minimized proton arc therapy planning technique. In conclusion, proton arc therapy was found to provide an advantage over VMAT in regard to predicted risk of SMN following prostate radiotherapy. This advantage was independent of margin size and was amplified with risk-optimized proton beam weighting.
Resumo:
The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma. This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that the clinical outcome can vary significantly among patients within the same stage. The current classification provides limited prognostic information and does not predict response to therapy. Multiple ways to classify cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell origin, molecular pathways, mutation status and gene expression-based stratification. These parameters rely on tumour-cell characteristics. Extensive literature has investigated the host immune response against cancer and demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named 'Immunoscore' has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
Low-grade gliomas (LGGs) are a group of primary brain tumours usually encountered in young patient populations. These tumours represent a difficult challenge because many patients survive a decade or more and may be at a higher risk for treatment-related complications. Specifically, radiation therapy is known to have a relevant effect on survival but in many cases it can be deferred to avoid side effects while maintaining its beneficial effect. However, a subset of LGGs manifests more aggressive clinical behaviour and requires earlier intervention. Moreover, the effectiveness of radiotherapy depends on the tumour characteristics. Recently Pallud et al. (2012. Neuro-Oncology, 14: , 1-10) studied patients with LGGs treated with radiation therapy as a first-line therapy and obtained the counterintuitive result that tumours with a fast response to the therapy had a worse prognosis than those responding late. In this paper, we construct a mathematical model describing the basic facts of glioma progression and response to radiotherapy. The model provides also an explanation to the observations of Pallud et al. Using the model, we propose radiation fractionation schemes that might be therapeutically useful by helping to evaluate tumour malignancy while at the same time reducing the toxicity associated to the treatment.
Resumo:
Cancer is one of the leading causes of death in companion animals. Information on the epidemiology of cancer is instrumental for veterinary practitioners in patient management; however, spontaneously arising tumours in companion animals also resemble those in man and can provide useful data in combating cancer. Veterinary cancer registries for cats are few in number and have often remained short-lived. This paper presents a retrospective study of tumours in cats in Switzerland from 1965 to 2008. Tumour diagnoses were coded according to topographical and morphological keys of the International Classification of Oncology for Humans (ICD-O-3). Correlations between breed, sex and age were then examined using a multiple logistic regression model. A total of 18,375 tumours were diagnosed in 51,322 cats. Of these, 14,759 (80.3%) tumours were malignant. Several breeds had significantly lower odds ratios for developing a tumour compared with European shorthair cats. The odds of a cat developing a tumour increased with age, up to the age of 16 years, and female cats had higher risk of developing a tumour compared with male cats. Skin (4,970; 27.05%) was the most frequent location for tumours, followed by connective tissue (3,498; 19.04%), unknown location (2,532; 13.78%) and female sexual organs (1,564; 8.51%). The most common tumour types were epithelial tumours (7,913; 43.06%), mesenchymal tumours (5,142; 27.98%) and lymphoid tumours (3,911; 21.28%).