863 resultados para Magnesium alloys
Resumo:
The precipitation behavior of the magnesium alloy WE43 (Mg-4%Y-2.3%Nd-0.5%Zr) has been studied in strained and unstrained conditions using Transmission Electron Microscopy (TEM). Ageing treatments were carried out at three temperatures, namely 210 degrees C, 230 degrees C and 260 degrees C. The precipitation sequence during static aging of solution treated (ST) samples has been identified as ST —> beta'' —> beta' followed by the formation of beta(1) and equilibrium beta precipitates form after very long ageing periods. Dynamic precipitation was observed during high temperature deformation, leading to the formation of beta' and intermediate beta(1) precipitates. The strained samples, when further heat treated, resulted in the transformation of beta(1) into beta equilibrium precipitates. The sequence of dynamic precipitation is ST —> beta(1) —> beta and ST —> beta'. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The effects of combined additions of Ca and Sb on the microstructure and tensile properties of AZ91D alloy fabricated by squeeze-casting have been investigated. For comparison, the same has also been studied with and without individual additions of Ca and Sb. The results indicate that both individual and combined additions refine the grain size and beta-Mg17Al12 phase, which is more pronounced with combined additions. Besides alpha-Mg and beta-Mg17Al12 phases, a new reticular Al2Ca and rod-shaped Mg3Sb2 phases are formed following individual additions of Ca and Sb in the AZ91D alloy. With combined additions, an additional Ca2Sb phase is formed suppressing Mg3Sb2 phase. Additions of both Ca and Sb increase yield strength (YS) at both ambient and elevated temperatures up to 200 degrees C. However, both ductility and ultimate tensile strength (UTS) decrease first up to 150 degrees C and then increase at 200 degrees C. The increase in YS is attributed to the refinement of grain size, whereas, ductility and UTS are deteriorated by the presence of brittle Al2Ca, Mg3Sb2 and Ca2Sb phases. The best tensile properties are obtained in the AZXY9110 alloy owing to the presence of lesser amount of brittle Al2Ca and Ca2Sb phases resulted from the optimum content of 1.0Ca and 0.3Sb (wt%). The fracture surface of the tensile specimen tested at ambient temperature reveals cleavage failure that changes to quasi-cleavage at 200 degrees C. The squeeze-cast alloys exhibited better tensile properties as compared to that of the gravity-cast alloys nullifying the detrimental effects of Ca and/or Sb additions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Mg-3Al-3RE alloys (RE, the cerium-rich or the yttrium-rich misch metal) were smelted in a resistance furnace under the protective flux from the Mg-RE master alloys and pure magnesium ingots. The microstructure and mechanical properties of samples prepared by steel mould casting method were investigated.
Resumo:
The Mg-8Gd-0.6Zr-xHo (x = 1, 3 and 5, mass%) alloys were prepared by casting technology, and structures, aging strengthening mechanism and mechanical properties of the alloys were investigated. The age behaviors and the mechanical properties are improved by adding Ho addition. The structures of the alloys are characterized by the present of rosette-shaped equiaxed grains. The peak hardness value of the Mg-8Gd-0.6Zr-3Ho alloy is 100 Hv, which is about 30% higher than that of Mg-8Gd-0.6Zr alloy.
Resumo:
The influence of the addition of mischmetal (MM) and tin (Sn) (total content of mischmetal and tin = 4 wt.%) on the microstructure, aging behavior and mechanical properties of Mg-6Zn-5Al-based alloys has been investigated. The microstructure of the as-cast alloys consists of alpha-Mg. Mg-32(Al,Zn)(49), Al2Mg5Zn2, Mg2Sn and Al2MMZn2 phases, and the morphology of these intermetallic phases varies with different MM and Sri additions.
Resumo:
Mg-8Gd-2Y-Nd-0.3Zn (wt%) alloy was prepared by the high pressure die-cast technique. The microstructure, mechanical properties in the temperature range from room temperature to 573 K, and strengthening mechanism were investigated. It was confirmed that the Mg-Gd-based alloy with high Gd content exhibited outstanding die-cast character. The die-cast alloy was mainly composed of small cellular equiaxed dendrites and the matrix. The long lamellar-shaped stacking compound of Mg3X (X: Gd, Y, Nd, and Zn) and polygon-shaped.
Resumo:
Mg-8Gd-0.6Zr-1RE (RE = La or Ce, wt.%) alloys were prepared by casting. The microstructures, age hardening behavior and mechanical properties were investigated. The results show that the addition of 1 wt.% La or Ce to a Mg-8Gd-0.6Zr alloy reduces the dendrite arm spacing and slightly improves the mechanical properties and age hardening response.
Resumo:
Microstructure and mechanical properties of Mg-4.5Zn-xNd (x = 0, 1 and 2, wt%) alloys heat-treated at 603 K for 2 It have been investigated. T-phase (an Mg-Zn-Nd ternary phase) was observed in the Nd containing alloys. The optimal mechanical properties were obtained in the Mg-4.5Zn-1Nd alloy, and the ultimate tensile strength and yield strength were 228 and 79 MPa, respectively. Through comparing with the Mg-4.5Zn alloy, the increments of ultimate tensile strength and yield strength were 51 and 17 MPa.
Resumo:
The Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr (wt.%) alloy was prepared by casting technology, and the structure, age hardening behavior and mechanical properties of the alloy have been investigated. The results demonstrated that the alloy was composed of alpha-Mg matrix, a lot of dispersed Mg24RE5 (RE = Gd/Y/Nd) and Mg5RE precipitates in the as-cast and the T6 state alloys. The alloy exhibited remarkable age hardening response and excellent mechanical properties from room temperature (RT) to 300 degrees C by optimum solid solution and aging conditions. The ultimate tensile strength.
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
Mg-5Al-0.3Mn-xCe (x = 0-3, wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results revealed that the main phases of as-cast Mg-5Al-0.3Mn alloy consist of alpha-Mg matrix and beta-Mg17Al12 phase. With the addition of Ce element, Al11Ce3 precipitates were formed and mainly aggregated along the grain boundaries. The amount of the Al11Ce3 precipitates increased with increasing addition of Ce, but the amount of beta-Mg17Al12 phase decreased. The highest tensile strength was obtained in Mg-5Al-0.3Mn-1.5Ce alloy. The ultimate tensile strength (UTS), yield strength (YS) and elongation at room temperature are 203 MPa, 88 MPa and 20%, separately.
Resumo:
Mg-8Gd-0.6Zr-xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg-8Gd-0.6Zr-3Nd alloy is 103, it is about 1.3 times more than that of the Mg-8Gd-0.6Zr alloy. The aged Mg-8Gd-0.6Zr-3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 degrees C, respectively. Which are about 2 times higher than those of Mg-8Gd-0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness Of Mg5RE and Mg12RE precipitates in the alloy.
Resumo:
In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.
Resumo:
The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.