610 resultados para Magnesium alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion of die cast AZ91D was studied and related to its microstructure. For comparison and to more fully understand the behaviour of die cast AZ91D, corrosion studies and microstructural examinations were also carried out using slowly solidified high purity AZ91, Mg-2%Al, Mg-9%Al, low purity magnesium and high purity magnesium. Corrosion was studied in 1N NaCl at pH 11 by (1) observing the corrosion morphology, (2) measuring electrochemical polarisation curves and (3) simultaneously measuring both the hydrogen evolution rate and the magnesium dissolution rate. The skin of die cast AZ91D showed better corrosion resistance than the interior. This is attributed to a combination of(1) a higher volume fraction of the beta phase, (2) a more continuous beta phase distribution around finer alpha grains, and (3) lower porosity in the skin layer than in the interior of the die casting. This study showed that the casting method can influence the corrosion performance by its influence on the alloy microstructure. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Geodia species collected from southern Australian waters of the Great Australian Eight has yielded a potent new in vitro nematocidal agent identified as geodin A Mg salt (1), a new macrocyclic polyketide lactam tetramic acid magnesium salt. The structure for 1 was assigned on the basis of detailed spectroscopic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoeutectic AI-Si alloys represent the most widely used alloy system for cast aluminium applications. This system has a unique behaviour with respect to grain formation where an increase in silicon content results in a transition to larger grain sizes after a minimum at an intermediate concentration. As a result of the already large solute content, grain refinement by solute additions is inefficient and nucleant particles from the common aluminium grain refiners are not as effective as in wrought alloys. However, casting conditions, such as a low pouring temperature, that promote the formation of wall crystals tie. crystals nucleated in the thermally undercooled layer at or next to mould walls) are very effective in yielding a small grain size. This paper presents results of an investigation of the effect of low superheat and mould preheat temperature on grain size. It was found that pouring temperature controls the effectiveness of the wall mechanism while mould preheat has little effect until high preheat temperatures at which a large increase in grain size occurs. The observed changes in grain size are explained in terms of the balance between nucleation rate and survival rate of crystal nuclei resulting from changes in superheat and mould temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high strength to weight ratio of magnesium alloys makes them extremely attractive for applications in transport or aerospace technology. However, their corrosion behavior is a major issue and one reason why they are still not as popular as aluminum alloys. This papers reviews the corrosion mechanisms of magnesium and provides the basis for the design of new alloys with improved corrosion properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study evaluated the effect of magnesium dietary deficiency on bone metabolism and bone tissue around implants with established osseointegration. Materials and methods: For this, 30 rats received an implant in the right tibial metaphysis. After 60 days for healing of the implants, the animals were divided into groups according to the diet received Control group (CTL) received a standard diet with adequate magnesium content, while test group (Mg) received the same diet except for a 90% reduction of magnesium. The animals were sacrificed after 90 days for evaluation of calcium, magnesium, osteocalcin and parathyroid hormone (PTH) serum levels and the deoxypyridinoline (DPD) level in the urine. The effect of magnesium deficiency on skeletal bone tissue was evaluated by densitometry of the lumbar vertebrae, while the effect of bone tissue around titanium implants was evaluated by radiographic measurement of cortical bone thickness and bone density. The effect on biomechanical characteristics was verified by implant removal torque testing. Results: Magnesium dietary deficiency resulted in a decrease of the magnesium serum level and an increase of PTH and DPD levels (P <= 0.05). The Mg group also presented a loss of systemic bone mass decreased cortical bone thickness and lower values of removal torque of the implants (P <= 0.01). Conclusions: The present study concluded that magnesium-deficient diet had a negative influence on bone metabolism as well as on the bone tissue around the implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study evaluated the effect of severe magnesium (Mg) dietary deficiency on systemic bone density and biomechanical resistance of bone tissue to the removal torque of osseointegrated implants Materials and Methods The sample consisted of 45 rats, each received a titanium implant in their tibial metaphysis After 60 days, the animals were divided into three groups (n = 15) according to their dietary Mg the control group received the recommended content of Mg, group Mg1 received a 75% reduction in dietary Mg content, and group Mg2 was fed a diet with a 90% reduction in Mg con tent Animals were sacrificed 150 days after implant placement Serum concentrations of Mg were measured and the effect of Mg deficiency on systemic bone density was evaluated by densitometry of the lumbar vertebrae and femur Biomechanical characteristics were measured by resistance of the bone tissue to removal of the implants Results Lower Mg serum concentrations were found for the Mg1 and Mg2 groups, however, densitometric analysis and torque evaluations showed a statistically significant difference only in the Mg2 group (P < 05) There was a statistically significant difference in removal torque between the Mg2 group and the control group Conclusions This study showed that a severe deficiency of Mg decreased the systemic bone density and removal torque of osseointegrated implants INT J ORAL MAXILLOFAC IMPLANTS 2010 25 1125-1130

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical investigation was carried out to study the corrosion of pure magnesium in 1 N NaCl at different pH values involving electrochemical polarisation, scanning tunnel microscopy (STM), measurement of hydrogen gas evolution and measurement of the elements dissolved from the magnesium specimen which were determined by inductively coupled plasma atomic emission spectrophotometry (ICPAES). A partially protective surface film was a principal factor controlling corrosion. Film coverage decreased with increasing applied electrode potential. Application of a suitable external cathodic current density was shown to inhibit magnesium dissolution whilst at the same time the hydrogen evolution rate was relatively small. This showed that cathodic protection could be used to significantly reduce magnesium corrosion. A new definition is proposed for the negative difference effect (NDE). (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnesium (Mg) status of 52 highly weathered, predominantly acidic, surface soils from tropical and subtropical north-eastern Australia was evaluated in a laboratory study. Soils were selected to represent a range of soil types and management histories. Exchangeable Mg concentrations were generally low (median value 0.37 cmol(+)/kg), with deficient levels (<0.3 cmol(+)/kg) being measured in 22 of the soils, highlighting the potential for Mg deficiency as a limitation to plant growth in the region. Furthermore, acid-extractable Mg concentrations, considered a reserve of potentially available Mg, were generally modest (mean and median values, 1.6 and 0.40 cmol(+)/kg, respectively). The total Mg content of the soils studied ranged from 123 to 7894 mg/kg, the majority present in the mineral pool (mean 71%), with smaller proportions in the acid-soluble (mean 11%) and exchangeable (mean 17%) pools, and a negligible amount associated with organic matter (mean 1%). A range of extractant solutions used to displace exchangeable Mg was compared, and found to yield similar results on soils with exchangeable Mg <4 cmol(+)/kg. However, at higher exchangeable Mg concentrations, dilute extractants (0.01 M CaCl2, 0.0125 M BaCl2) displaced less Mg than concentrated extractants (1 M NH4Cl, 1 M NH4OAc, 1 M KCl). The concentrated extractants displaced similar amounts of Mg, thus the choice of extractant is not critical, provided the displacing cation is sufficiently concentrated. Exchangeable Mg was not significantly correlated to organic carbon (P > 0.05), and only 45% of the variation in exchangeable Mg could be explained by a combination of pH(w) and clay content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glasshouse trial, in which maize (Zea mays L. cv. Pioneer 3270) was grown in 35 north-eastern Australian soils of low magnesium (Mg) status, was undertaken to study the response to applied Mg. Of the soils studied, 20 were strongly acidic (pH(1:5 soil:water) <5.4), and in these soils the response to Mg was studied in both the presence and absence of lime. Magnesium application significantly (P < 0.05) increased dry matter yield in 10 soils, all of which were strongly acidic. However, significant Mg responses were recorded in 6 soils in the presence of lime, indicating that, in many situations, liming strategies may need to include consideration of Mg nutrition. Critical soil test values for 90% relative yield were 0.21 cmol(+)/kg of exchangeable Mg or 7% Mg saturation, whilst the critical (90% yield) plant tissue Mg concentration (whole shoots) was 0.15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength. Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey`s test (alpha = 0.05). Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted. Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.