909 resultados para Machine Virtuelle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe a system for the automatic recognition of isolated handwritten Devanagari characters obtained by linearizing consonant conjuncts. Owing to the large number of characters and resulting demands on data acquisition, we use structural recognition techniques to reduce some characters to others. The residual characters are then classified using the subspace method. Finally the results of structural recognition and feature-based matching are mapped to give final output. The proposed system Ifs evaluated for the writer dependent scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study considers the scheduling problem observed in the burn-in operation of semiconductor final testing, where jobs are associated with release times, due dates, processing times, sizes, and non-agreeable release times and due dates. The burn-in oven is modeled as a batch-processing machine which can process a batch of several jobs as long as the total sizes of the jobs do not exceed the machine capacity and the processing time of a batch is equal to the longest time among all the jobs in the batch. Due to the importance of on-time delivery in semiconductor manufacturing, the objective measure of this problem is to minimize total weighted tardiness. We have formulated the scheduling problem into an integer linear programming model and empirically show its computational intractability. Due to the computational intractability, we propose a few simple greedy heuristic algorithms and meta-heuristic algorithm, simulated annealing (SA). A series of computational experiments are conducted to evaluate the performance of the proposed heuristic algorithms in comparison with exact solution on various small-size problem instances and in comparison with estimated optimal solution on various real-life large size problem instances. The computational results show that the SA algorithm, with initial solution obtained using our own proposed greedy heuristic algorithm, consistently finds a robust solution in a reasonable amount of computation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has two items: biofouling and antifouling in paper industry. Biofouling means unwanted microbial accumulation on surfaces causing e.g. disturbances in industrial processes, contamination of medical devices or of water distribution networks. Antifouling focuses on preventing accumulation of the biofilms in undesired places. Deinococcus geothermalis is a pink-pigmented, thermophilic bacterium, and extremely resistant towards radiation, UV-light and desiccation and known as a biofouler of paper machines forming firm and biocide resistant biofilms on the stainless steel surfaces. The compact structure of biofilm microcolonies of D. geothermalis E50051 and the adhesion into abiotic surfaces were investigated by confocal laser scanning microscope combined with carbohydrate specific fluorescently labelled lectins. The extracellular polymeric substance in D. geothermalis microcolonies was found to be a composite of at least five different glycoconjugates contributing to adhesion, functioning as structural elements, putative storages for water, gliding motility and likely also to protection. The adhesion threads that D. geothermalis seems to use to adhere on an abiotic surface and to anchor itself to the neighbouring cells were shown to be protein. Four protein components of type IV pilin were identified. In addition, the lectin staining showed that the adhesion threads were covered with galactose containing glycoconjugates. The threads were not exposed on planktic cells indicating their primary role in adhesion and in biofilm formation. I investigated by quantitative real-time PCR the presence of D. geothermalis in biofilms, deposits, process waters and paper end products from 24 paper and board mills. The primers designed for doing this were targeted to the 16S rRNA gene of D. geothermalis. We found D. geothermalis DNA from 9 machines, in total 16 samples of the 120 mill samples searched for. The total bacterial content varied in those samples between 107 to 3 ×1010 16S rRNA gene copies g-1. The proportion of D. geothermalis in those same samples was minor, 0.03 1.3 % of the total bacterial content. Nevertheless D. geothermalis may endanger paper quality as its DNA was shown in an end product. As an antifouling method towards biofilms we studied the electrochemical polarization. Two novel instruments were designed for this work. The double biofilm analyzer was designed for search for a polarization program that would eradicate D. geothermalis biofilm or from stainless steel under conditions simulating paper mill environment. The Radbox instrument was designed to study the generation of reactive oxygen species during the polarization that was effective in antifouling of D. geothermalis. We found that cathodic character and a pulsed mode of polarization were required to achieve detaching D. geothermalis biofilm from stainless steel. We also found that the efficiency of polarization was good on submerged, and poor on splash area biofilms. By adding oxidative biocides, bromochloro-5,5-dimethylhydantoin, 2,2-dibromo-2-cyanodiacetamide or peracetic acid gave additive value with polarization, being active on splash area biofilms. We showed that the cathodically weighted pulsed polarization that was active in removing D. geothermalis was also effective in generation of reactive oxygen species. It is possible that the antifouling effect relied on the generation of ROS on the polarized steel surfaces. Antifouling method successful towards D. geothermalis that is a tenacious biofouler and possesses a high tolerance to oxidative stressors could be functional also towards other biofoulers and applicable in wet industrial processes elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dem vorliegenden Aufsatz wird eine vergleichende Untersuchung eines Deutschkurses (Tyska V: Interkulturelle Themen) an der Schwedischen Wirtschaftsuniversität Helsinki (Hanken) präsentiert, der im Jahr 2002 vollständig virtuell und im Jahr 2003 mit virtuellen Lernphasen und Kontaktunterricht im Wechsel realisiert wurde, wobei sich das virtuelle Kursmaterial jeweils in der Lernumgebung WebCT befand. In der Untersuchung werden die Leistungen, die Kursevaluationen und die Arbeitsstrategien der Studierenden in den beiden Kurskonzepten analysiert und miteinander verglichen. In Bezug auf die Leistungen der Studierenden hat sich gezeigt, dass die guten Studierenden in beiden Kurskonzepten gleich gute Ergebnisse erzielen. Die Untersuchung zeigt jedoch, dass der Kontaktunterricht des teils-virtuellen Kurskonzeptes gerade für die schwächeren Studierenden eine wichtige Funktion erfüllt – die schwächeren Studierenden erzielen im Kurskonzept mit Kontaktunterricht deutlich bessere Ergebnisse als die schwächeren Studierenden im ganz virtuellen Kurskonzept. Ein Vergleich der Arbeitsstrategien zeigt, dass die schwächeren Studierenden im Unterschied zu den guten Studierenden deutliche Schwierigkeiten mit dem Zeit- und Materialmanagement haben. Für die Weiterentwicklung des Kurskonzeptes sind zum einen die technischen Rahmenbedingungen zu verbessern, und zum anderen muss der Kontaktunterricht neu überdacht werden, da die Einführung des Themas Arbeitsstrategien in der virtuellen Lernumgebung als eigenständiger Themenbereich dringend notwendig erscheint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an SIMD machine which has been tuned to execute low-level vision algorithms employing the relaxation labeling paradigm. Novel features of the design include: 1. (1) a communication scheme capable of window accessing under a single instruction. 2. (2) flexible I/O instructions to load overlapped data segments; and 3. (3) data-conditional instructions which can be nested to an arbitrary degree. A time analysis of the stereo correspondence problem, as implemented on a simulated version of the machine using the probabilistic relaxation technique, shows a speed up of almost N2 for an N × N array of PEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper mainly concentrates on the application of the direct torque control (DTC) technique for the induction machine based integrated startergenerator (ISG) for automobile applications. It also discusses in brief about the higher DC bus voltage requirements in the automobiles i.e. present 14V system vs. 42V system to meet the power requirements, modes of operation of ISG, electric machine and the drive selection for the ISG,description of DTC technique, simulation and experimental results, and implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel genetic algorithm is developed by generating artificial chromosomes with probability control to solve the machine scheduling problems. Generating artificial chromosomes for Genetic Algorithm (ACGA) is closely related to Evolutionary Algorithms Based on Probabilistic Models (EAPM). The artificial chromosomes are generated by a probability model that extracts the gene information from current population. ACGA is considered as a hybrid algorithm because both the conventional genetic operators and a probability model are integrated. The ACGA proposed in this paper, further employs the ``evaporation concept'' applied in Ant Colony Optimization (ACO) to solve the permutation flowshop problem. The ``evaporation concept'' is used to reduce the effect of past experience and to explore new alternative solutions. In this paper, we propose three different methods for the probability of evaporation. This probability of evaporation is applied as soon as a job is assigned to a position in the permutation flowshop problem. Experimental results show that our ACGA with the evaporation concept gives better performance than some algorithms in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New materials in concrete constructions have been widely used to improve various properties such as impact resistance, strength and durability. Polymer modified concrete is one of the new materials which has been developed for potential application in the construction industry. This Paper describes the use of polymer latex for foundation blocks subjected to dynamic loads. Experiments were conducted using ordinary concrete and latex modified concrete footings of three different thicknesses, for three static loads at four excitation levels. Experimental results have revealed that the amplitude of resonance is reduced considerably in the latex modified concrete footings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry