978 resultados para Ma Twan Lin.
Resumo:
Maintenance decisions for large-scale asset systems are often beyond an asset manager's capacity to handle. The presence of a number of possibly conflicting decision criteria, the large number of possible maintenance policies, and the reality of budget constraints often produce complex problems, where the underlying trade-offs are not apparent to the asset manager. This paper presents the decision support tool "JOB" (Justification and Optimisation of Budgets), which has been designed to help asset managers of large systems assess, select, interpret and optimise the effects of their maintenance policies in the presence of limited budgets. This decision support capability is realized through an efficient, scalable backtracking- based algorithm for the optimisation of maintenance policies, while enabling the user to view a number of solutions near this optimum and explore tradeoffs with other decision criteria. To assist the asset manager in selecting between various policies, JOB also provides the capability of Multiple Criteria Decision Making. In this paper, the JOB tool is presented and its applicability for the maintenance of a complex power plant system.
Resumo:
This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.
Resumo:
As a Lecturer of Animation History and 3D Computer Animator, I received a copy of Moving Innovation: A History of Computer Animation by Tom Sito with an element of anticipation in the hope that this text would clarify the complex evolution of Computer Graphics (CG). Tom Sito did not disappoint, as this text weaves together the multiple development streams and convergent technologies and techniques throughout history that would ultimately result in modern CG. Universities now have students who have never known a world without computer animation and many students are younger than the first 3D CG animated feature film, Toy Story (1996); this text is ideal for teaching computer animation history and, as I would argue, it also provides a model for engaging young students in the study of animation history in general. This is because Sito places the development of computer animation within the context of its pre-digital ancestry and throughout the text he continues to link the discussion to the broader history of animation, its pioneers, technologies and techniques...
Resumo:
The purpose of this paper is to review existing knowledge management (KM) practices within the field of asset management, identify gaps, and propose a new approach to managing knowledge for asset management. Existing approaches to KM in the field of asset management are incomplete with the focus primarily on the application of data and information systems, for example the use of an asset register. It is contended these approaches provide access to explicit knowledge and overlook the importance of tacit knowledge acquisition, sharing and application. In doing so, current KM approaches within asset management tend to neglect the significance of relational factors; whereas studies in the knowledge management field have showed that relational modes such as social capital is imperative for ef-fective KM outcomes. In this paper, we argue that incorporating a relational ap-proach to KM is more likely to contribute to the exchange of ideas and the devel-opment of creative responses necessary to improve decision-making in asset management. This conceptual paper uses extant literature to explain knowledge management antecedents and explore its outcomes in the context of asset man-agement. KM is a component in the new Integrated Strategic Asset Management (ISAM) framework developed in conjunction with asset management industry as-sociations (AAMCoG, 2012) that improves asset management performance. In this paper we use Nahapiet and Ghoshal’s (1998) model to explain antecedents of relational approach to knowledge management. Further, we develop an argument that relational knowledge management is likely to contribute to the improvement of the ISAM framework components, such as Organisational Strategic Manage-ment, Service Planning and Delivery. The main contribution of the paper is a novel and robust approach to managing knowledge that leads to the improvement of asset management outcomes.
Resumo:
Linear assets are engineering infrastructure, such as pipelines, railway lines, and electricity cables, which span long distances and can be divided into different segments. Optimal management of such assets is critical for asset owners as they normally involve significant capital investment. Currently, Time Based Preventive Maintenance (TBPM) strategies are commonly used in industry to improve the reliability of such assets, as they are easy to implement compared with reliability or risk-based preventive maintenance strategies. Linear assets are normally of large scale and thus their preventive maintenance is costly. Their owners and maintainers are always seeking to optimize their TBPM outcomes in terms of minimizing total expected costs over a long term involving multiple maintenance cycles. These costs include repair costs, preventive maintenance costs, and production losses. A TBPM strategy defines when Preventive Maintenance (PM) starts, how frequently the PM is conducted and which segments of a linear asset are operated on in each PM action. A number of factors such as required minimal mission time, customer satisfaction, human resources, and acceptable risk levels need to be considered when planning such a strategy. However, in current practice, TBPM decisions are often made based on decision makers’ expertise or industrial historical practice, and lack a systematic analysis of the effects of these factors. To address this issue, here we investigate the characteristics of TBPM of linear assets, and develop an effective multiple criteria decision making approach for determining an optimal TBPM strategy. We develop a recursive optimization equation which makes it possible to evaluate the effect of different maintenance options for linear assets, such as the best partitioning of the asset into segments and the maintenance cost per segment.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.