953 resultados para MON810 maize
Resumo:
In the Centane magisterial area of South Africa, high rates of oesophageal cancer have been associated with home-grown maize contaminated with fumonisins. The aim of this study was to implement a simple intervention method to reduce fumonisin exposure in a subsistence-farming community. The hand-sorting and washing procedures, based on traditional maize-based food preparation practices, were previously customised under laboratory-controlled conditions. Home-grown maize and maize-based porridge collected at baseline were analysed for fumonisin B1, B2 and B3. The geometric mean (95% confidence interval) of fumonisin contamination in the home-grown maize at baseline was 1.67 (1.21-2.32) mg kg-1 and 1.24 (0.75-2.04) mg kg -1 (dry weight) in the porridge. Fumonisin exposure was based on individual stiff porridge consumption and the specific fumonisin levels in the porridge (dry weight) consumed. Porridge (dry weight) consumption at baseline was 0.34 kg day-1 and fumonisin exposure was 6.73 (3.90-11.6) mu g kg-1 body weight day-1. Female participants (n = 22) were trained to recognise and remove visibly infected/damaged kernels and to wash the remaining maize kernels. The discarded kernels represented 3.9% by weight and the fumonisins varied from 17.1 to 76.9 mg kg-1. The customised hand-sorting and washing procedures reduced fumonisin contamination in the maize and porridge by 84 and 65%, respectively. The intervention reduced fumonisin exposure by 62% to 2.55 (1.94-3.35) mu g kg-1 body weight day-1. This simple intervention method has the potential to improve food safety and health in subsistence-farming communities consuming fumonisin-contaminated maize as their staple diet.
Resumo:
Aflatoxins are a family of fungal toxins that are carcinogenic to man and cause immunosuppression, cancer and growth reduction in animals. We conducted a cross-sectional study among 480 children (age 9 months to 5 years) across 4 agroecological zones (SS, NGS, SGS and CS) in Benin and Togo to identify the effect of aflatoxin exposure on child growth and assess the pattern of exposure. Prior reports on this study [Gong, Y.Y., Cardwell, K., Hounsa, A., Egal, S., Turner, Hall, A.J., Wild, C.P., 2002. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study. British Medical Journal 325, 20-21, Gong, Y.Y., Egal, S., Hounsa, A., Turner, P.C., Hall, A.J., Cardwell, K., Wild, C.P., 2003. Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: the critical role of weaning and weaning foods. International Journal of Epidemiology, 32, 556-562] showed that aflatoxin exposure among these children is widespread (99%) and that growth faltering is associated with high blood aflatoxinalbumin adducts (AF-alb adducts), a measure of recent past exposure. The present report demonstrates that consumption of maize is an important source of aflatoxin exposure for the survey population. Higher AF-alb adducts were correlated with higher A. flavus (CFU) infestation of maize (p=0.006), higher aflatoxin contamination (ppb) of maize (p<0.0001) and higher consumption frequencies of maize (p=0.053). The likelihood of aflatoxin exposure from maize was particularly high in agro-ecological zones where the frequency of maize consumption (SGS and CS), the presence of allatoxin in maize (SGS) or the presence of A. flavus on maize (NGS and SGS) was relatively high. Socio-economic background did not affect the presence of A. flavus and aflatoxin in maize, but better maternal education was associated with lower frequencies of maize consumption among children from the northernmost agro-ecological zone (SS) (p=0.001). The impact of groundinit consumption on aflatoxin exposure was limited in this population. High AF-alb adduct levels were correlated with high prevalence of A. flavus and aflatoxin in groundinit, but significance was weak after adjustment for weaning status, agro-ecological zone and maternal socio-economic status (resp. p = 0.091 and p = 0.083). Ingestion of A. flavus and aflatoxin was high in certain agro-ecological zones (SS and SGS) and among the higher socio-economic strata due to higher frequencies of groundnut consumption. Contamination of groundnuts was similar across socio-economic and agroecological boundaries.
In conclusion, dietary exposure to aflatoxin from groundnut was less than from maize in young children from Benin and Togo. Intervention strategies that aim to reduce dietary exposure in this population need to focus on maize consumption in particular, but they should not ignore consumption of groundnuts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Maize actin-depolymerizing factor, ZmADF, binds both G- and F-actin and enhances in vitro actin dynamics. Evidence from studies on vertebrate ADF/cofilin supports the view that this class of protein responds to intracellular and extracellular signals and causes actin reorganization. As a test to determine whether such signal-responsive pathways existed in plants, this study addressed the ability of maize ADF to be phosphorylated and the likely effects of such phosphorylation on its capacity to modulate actin dynamics. It is shown that maize ADF3 (ZmADF3) can be phosphorylated by a calcium-stimulated protein kinase present in a 40-70% ammonium sulphate fraction of a plant cell extract. Phosphorylation is shown to be on Ser6, which is only one of nine amino acids that are fully conserved among the ADF/cofilin proteins across distantly related species. In addition, an analogue of phosphorylated ZmADF3 created by mutating Ser6 to Asp6 (zmadf3-4) does not bind G- or F-actin and has little effect on the enhancement of actin dynamics. These results are discussed in context of the previously observed actin reorganization in root hair cells.
Resumo:
Children consuming maize based foods in Tanzania may be exposed to multiple mycotoxins. We estimated co-exposures of aflatoxins with Deoxynivalenol (DON) and fumonisins for children in rural Tanzania. Food consumption by the children was estimated by twice administering a 24 h dietary recall questionnaire to mothers of 18-24 months old children in Kikelelwa village. Each mother also; provided a sample of maize based flour used for feeding her child in the previous day. Each child's body weight (bw) was measured by following standard procedures. Aflatoxins, DON and fumonisins were determined in each sample using validated HPLC methods. Exposures for a mycotoxin were estimated by multiplying flour consumption (g/child/kgbw/day) by its contamination (mu g/kg). Complete data were obtained for 41 children. Maize flour consumption ranged from 16 to 254 g/child/day. Thirteen (32%) of the 41 children consumed flour with detectable aflatoxin levels (range, 0.11-386 mu g/kg), resulting in exposures from 1 to 786 ng/kg bw/day. All these children exceeded the aflatoxins exposure of concern (0.017 ng/kg bw/day). Eighteen (44%) of the children consumed flour with detectable DON levels (57-825 mu g/kg) and 34(83%), detectable fumonisins levels (63-2284 mu g/kg), resulting in respective exposure ranges of 0.38-8.87 mu g/kg bw/day and 0.19-26.37 mu g/kg bw/day. Twelve (66%) of the DON exposed children and 56% of the fumonisins exposed children exceeded the respective provisional tolerable daily intakes of 1 mu g/kg bw and 2 ng/kg bw. Co-exposures for aflatoxins with both DON and fumonsins were determined in 10% of the 41 children. Co-exposures of aflatoxins with fumonisins alone were found in 29% and of fumonisins with DON alone in 41% of the children. The study showed that children consuming maize based complementary foods in Northern Tanzania are at a risk of exposure to multiple mycotoxins. We recommend adoption of appropriate measures to minimize exposures of multiple mycotoxins in Tanzania. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis-Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis-Menten kinetics. Arsenite influx was well described by the two parameter model of 'Michaelis-Menten' kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA. © 2008 Springer Science+Business Media B.V.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i) biomass and nitrogen fixation (^15N natural abundance), (ii) soil carbon and nitrogen stocks and (iii) their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa). Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.
Resumo:
Adoption of hybrids and improved varieties has remained low in the smallholder farming sector of South Africa, despite maize being the staple food crop for the majority of households. The objective of this study was to establish preferred maize characteristics by farmers which can be used as selection criteria by maize breeders in crop improvement. Data were collected from three villages of a selected smallholder farming area in South Africa using a survey covering 300 households and participatory rural appraisal methodology. Results indicated a limited selection of maize varieties grown by farmers in the area compared to other communities in Africa. More than 97% of the farmers grew a local landrace called Natal-8-row or IsiZulu. Hybrids and improved open pollinated varieties were planted by less than 40% of the farmers. The Natal-8-row landrace had characteristics similar to landraces from eastern and southern Africa and closely resembled Hickory King, a landrace still popular in Southern Africa. The local landrace was preferred for its taste, recycled seed, tolerance to abiotic stresses and yield stability. Preferred characteristics of maize varieties were high yield and prolificacy, disease resistance, early maturity, white grain colour, and drying and shelling qualities. Farmers were willing to grow hybrids if the cost of seed and other inputs were affordable and their preferences were considered. Our results show that breeding opportunities exist for improving the farmers’ local varieties and maize breeders can take advantage of these preferred traits and incorporate them into existing high yielding varieties.
Resumo:
Two experiments were conducted to evaluate cassava root peel (CRP) as diet component for fattening pigs. In the first experiment, ten male pigs were used to investigate the nutrient digestibility and the nutritive value of CRP as replacement for maize in the diet at 0 %, 30 %, 40 %, 50 % and 60 %, while supplementing free amino acids (fAA). During two experimental periods, faeces were quantitatively collected and analysed for chemical composition. In the second experiment, 40 pigs received the same diets as in Experiment 1, and daily feed intake and weekly weight changes were recorded. Four pigs per diet were slaughtered at 70 kg body weight to evaluate carcass traits. Digestibility of dry and organic matter, crude protein, acid detergent fibre and gross energy were depressed (p<0.05) at 60 % CRP; digestible energy content (MJ kg^(−1) DM) was 15.4 at 0 % CRP and 12.7 at 60 % CRP. In the second experiment, CRP inclusion had only a small impact on feed intake, weight gain and feed conversion ratio (p>0.05) as well as on the length of the small intestine and the Longissimus dorsi muscle area. The missing correlation of daily weight gain and feed-to-gain ratio up to a CRP inclusion of 40 % indicates that negative effects of CRP on pig growth can be avoided by respecting upper feeding limits. Hence, a combined use of CRP and fAA can reduce feeding costs for small-scale pig farmers in countries where this crop-by product is available in large amounts.
Resumo:
Maize production in western Kenya is often limited by deficiencies of nitrogen and phosphorus. We assessed the effectiveness of Tithonia diversifolia green manure (tithonia), farmyard manure (FYM) and urea as sources of nitrogen (N) for maize when inorganic phosphorus (P) fertiliser was either broadcast (BR) or spot-placed in the planting hole (SP) for two consecutive seasons; October to December of 1998 and April to August of 1999 at two sites; Nyabeda and Khwisero in western Kenya. A randomised complete block design with four replications was used. Maize yields were higher at Nyabeda and responded to P application better than at Khwisero. At the same N rate, tithonia and FYM were as effective as urea in increasing maize yields at both sites. There were no significant differences in maize yields when phosphate fertiliser was either BR or SP regardless of the N source used in the first season. However, in the second season, the residual yields for the BR treatments were consistently higher than those of the SP. Our results suggest that tithonia and FYM can substitute for urea as N sources and that fertiliser P should be broadcast and incorporated together with the organic materials at the time of planting to save on labour costs.
Resumo:
The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.
Resumo:
This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary treatments namely hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and maize meal with molasses (MMMO). Ad libitum amount of each dietary treatment and hay were offered to nine steers for 90 days. Cooking loss (CL) and Warner Bratzler shear force (WBSF) values were determined on M. longissimus thoracis et lumborum aged for 3, 6, 9 and 12 days. Steers fed on HFMO diet had higher (P < 0.05) nutrient intake (86.39 MJ/d energy; 867 g/d CP), weight gain (919 g/d) and half carcass weight (75.8 kg) than those fed other diets. Meat of steers from all diets was tender with average WBSF values of 47.9 N cm^(−2). The CL (22.0 +/- 0.61%) and WBSF (53.4 +/- 0.70 N cm^(−2)) were highest in meat aged for 3 days followed by 6, 9 and 12 days. WBSF values for meat aged for 9 and 12 days from steers fed HFMO and RPMM diets were similar and lower than those on other dietary treatments x aging periods. Overall, molasses and hominy feed can be used to replace maize meal in feedlot finishing diets to spare its use in animal feeds.