992 resultados para MOLYBDENUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the hydrothermal synthesis of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications has been developed. Before the hydrothermal synthesis, the surface of the substrate was modified by an etching procedure that increases the roughness at the nanoscale level without completely eliminating the surface lay structure. Then, thin films of Al2O3 (170 nm) and TiO2 (50 nm) were successively deposited by atomic layer deposition (ALD) on the substrate. The internal Al2O3 film protects the Mo substrate from oxidation up to 550 degrees C in an oxidative environment. The high wettability of the external TiO2 film after UV irradiation increases zeolite nucleation on its surface. The role of the metal precursor (TiCl4 vs TiI4), deposition temperature (300 vs 500 degrees C), and film thickness (50 vs 100 nm) was investigated to obtain titania films with the slowest decay in the superhydrophilic behavior after UV irradiation. Zeolite Beta coatings with a Si/Al ratio of 23 were grown at 140 degrees C for 48 It. After ion exchange with a 10(-4) M cobalt acetate solution, the activity of the coatings was determined in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. A maximum reaction rate of 220 mu mol C2H3N g(-1) s(-1) was obtained at 500 degrees C, with 42% carbon selectivity to acetonitrile. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure has been developed to grow ZSM-5 crystals in situ on a molybdenum (Mo) support. The high heat conductivity (138 W/mK) and high mechanical stability at elevated temperatures of the Mo support allow the application of ZSM-5 coatings in micro reactors for high temperature processes involving large heat effects. The effect of the synthesis mixture composition on ZSM-5 coverage and on the uniformity of the ZSNI-5 coatings was investigated on plates of 10 X 10 mm(2). Ratios of H2O/Si = 50, SUAI = 25, and TPA/Al = 2.0 were found to be optimal for the formation of uniform coatings of 6 g/m(2) at a temperature of 150 degrees C and a synthesis time of 48 h. Scaling up of the synthesis procedure on 72 Mo plates of 40 x 9.8 x 0.1 mm 3 resulted in a uniform coverage of 14.8 +/- 0.4 g/m(2). The low deviation per individual plate (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atmosphere in the 850-1050 degrees C temperature range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide (MoSi2, Mo5Si3) phases, formed on the surface of Mo plates, was confirmed by X-ray diffraction analysis. The distribution of elements was determined by means of wavelength dispersive spectroscopy (WDS) spectra of the surface and line-scan analyses from surface to interior. Depending on the process type (diffusional or electrochemical) and temperature, the thickness of the protective layers formed on the substrate ranged from 6 to 40 gm. The oxidation resistance of obtained phases was investigated in an air-water mixture in the temperature range of 500-700 degrees C for a period up to 400 h. An improved oxidation behavior of coated plates in comparison with that of pure molybdenum was observed. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fischer-type (alkoxy)azolyl carbene complexes and Ofele-Lappert-type azolylinylidene complexes were synthesised by reaction of 1-phenylpyrazol-3 -yllithium, 4-methylthiazol-2-yllithium, benzothiazol-2-yllithium, 1-methylimidazol-2-yllithium with M(CO)(5)L (L = CO, THF or Cl-; M = Cr, Mo or W) and subsequent alkylation with CF3SO3CH3. The alkylation of Fischer-type carbene complexes containing an azolyl as the organic substituent proceeded via ring opening of tetrahydrofuran. When the alkylation is carried out in THF, the carbocation CH3O(CH2)(4)(+) acts as an electrophile. Protonation rather than alkylation of coordinated imidazolyl furnished cyclic imine complexes. Changing the donor atom of a coordinated thiazole from N to C by deprotonation and alkylation afforded a carbene complex. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Chemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sand Creek Prospect is located within the eastern exposed margin of the Coast Plutonic Complex. The occurrence is a plug and dyke porphyry molybdenum deposit. The rock types, listed in decreasing age: 1) metamorphlc schists and gneisses; 2) diorite suite rocks - diorite, quartz diorite, tonalite; 3) rocks of andesitic composition; 4) granodiorites, coarse porphyritic granodiorite, quartzfeldspar porphyry, feldspar porphyry; and 5) lamprophyre. Hydrothermal alteration is known to have resulted from emplacement of the hornblende-feldspar porphyry through to the quartz-feldspar porphyry. Molybdenum mineralization is chiefly associated with the quartz-feldspar porphyry. Ore mineralogy is dominated by pyrite with subordinate molybdenite, chalcopyrite, covelline, sphalerite, galena, scheelite, cassiterite and wolframite. Molybdenite exhibits a textural gradation outward from the quartz-feldspar porphyry. That is, disseminated rosettes and rosettes in quartz veins to fine-grained molybdenite in quartz veins and potassic altered fractures to fine-grained molybdenite paint or 6mears in the peripheral zones. The quartz-feldspar porphyry dykes were emplaced in an inhomogeneous stress field. The trend of dykes, faults and shear zones is 0^1° to 063° and dips between 58° NW and 86* SE. Joint Pole distribution reflects this fault orientation. These late deformatior maxima are probably superimposed upon annuli representing diapiric emplacement of the plutons. A model of emplacement involving two magmatic pulses is given in the following sequence: Diorite pulse (i) dioritequartz diorite, (ii) tonalites; granodiorite pulse (iii) hornblende-fildspar microporphyry, hornblende/biotite porphyry, (iv) coarse grained granodiorite, (v) quartz-feldspar porphyry, (vi) feldspar porphyry, and (vii) lamprophyre. The combination of plutonic and coarse porphyritic textures, extensive propylitic overprinting of potassic alteration assemblages suggests that the. prospect represents the lower reaches of a porphyry system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was focussed on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-Bu02H and on the effect of light in the molybdenum-catalyzed epoxidation of l-octene with t-Bu02H. It was shown that the Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide with t-Bu02H~ at 35°C, proceeds 278 times faster underUV light than under laboratory lighting, whereas the Mo02(acac)2-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI). The formation of the Mo(VI) species, from Mo(CO)6 was observed from the IR spectrum of Mo(CO)6 in the carbonyl region. The Mo(CO)6-catalyzed epoxidation of l-octene with t-Bu02H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting. The kinetics of the epoxidations of l-octene with t-Bu02H, catalyzed by Mo02(acac)2 were found to be complicated; after fast initial rates, the epoxidation rates decreased with time. The effect of phenylmethyl sulfide on the Mo(CO)6-catalyzed epoxidation of l-octene waS studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction rate. The epoxidation of l-octene was found to be 2.5 times faster in benzene than in ethanol. The substituent effect on the Mo02(acac)2-catalyzed oxidations of p-OH, p-CHgO, P-CH3' p-H, p-Cl, p-Br, p-CHgCO, p-HCO and P-N02 substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CHgOPhSMeand PhSMe. It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electronwithdrawing groups caused the reaction rate to decrease. The reaction constants 0 were determined by using 0, 0- and 0* constants. The rate effects were paralleled by the activation energies for oxidation. The decomposition of t-Bu02H in the presence of M.o (CO)6, Mo02 (acac)2 and VO(acac)2 was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis. The relative rates of the Mo02(acac)2-catalyzed oxidation of p-N02PhSMe by t-Bu02H in the presence of either p-CH30PhSMe or PhSMe clearly show that PhSMe and p-CHgOPhSMe act as co-catalysts in the oxidation of p-N02PhSMe. Benzene, mesity1ene and cyclohexane were used to determine the effect of solvent in the Mo02 (acac)2 and Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-Bu02H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.The oxidations of diphenyl sulfoxide catalyzed by VO(acac)2, Mo(CO)6 and Mo02(acac)2 showed that VO(acac)2 catalyzed the oxidation faster than Mo(CO)6 and Mo02 (acac)2_ Moreover, the Mo(CO)6-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the synthesis, structural studies, and stoichiometric and catalytic reactivity of novel Mo(IV) imido silylamide (R'N)Mo(R2)(173_RIN-SiR32-H)(PMe3)n (1: Rl = tBu, Ar', Ar; R2 = Cl; R32 = Me2, MePh, MeCl, Ph2, HPh; n = 2; 2: R' = Ar, R2 = SiH2Ph, n = 1) and hydride complexes (ArN)Mo(H)(R)(PMe3)3 (R = Cl (3), SiH2Ph (4». Compounds of type 1 were generated from (R'N)Mo(PMe3)n(L) (5: R' = tBu, Ar', Ar; L = PMe3, r/- C2H4) and chlorohydrosilanes by the imido/silane coupling approach, recently discovered in our group. The mechanism of the reaction of 5 with HSiCh to give (ArN)MoClz(PMe3)3 (8) was studied by VT NMR, which revealed the intermediacy of (ArN)MCh(172 -ArN=SiHCl)(PMe3)z (9). The imido/silyl coupling methodology was transferred to the reactions of 5 with chlorine-free hydrosilanes. This approach allowed for the isolation of a novel ,B-agostic compound (ArN)Mo(SiHzPh)(173 -NAr-SiHPhH)(PMe3) (10). The latter was found to be active in a variety of hydrosilation processes, including the rare monoaddition of PhSiH3 to benzonitrile. Stoichiometric reactions of 11 with unsaturated compounds appear to proceed via the silanimine intermediate (ArN)M(17z-ArN=SiHPh)(PMe3) (12) and, in the case of olefins and nitriles, give products of Si-C coupling, such as (ArN)Mo(R)(173 -NAr-SiHPh-CH=CHR')(PMe3) (13: R = Et, R' = H; 14: R = H, R' = Ph) and (ArN)Mo(172-NAr-SiHPh-CHR=N)(PMe3) (15). Compound 13 was also subjected to catalysis showing much improved activity in the hydrosilation of carbonyls and alkenes. Hydride complexes 3 and 4 were prepared starting from (ArN)MoCh(PMe3)3 (8). Both hydride species catalyze a diversity of hydrosilation processes that proceed via initial substrate activation but not silane addition. The proposed mechanism is supported by stoichiometric reactions of 3 and 4, kinetic NMR studies, and DFf calculations for the hydrosilation of benzaldehyde and acetone mediated by 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the synthesis, structural studies, stoichiometric and catalytic reactivity of novel Mo(IV) imido hydride complexes (Cp)(ArN)Mo(H)(PMe3) (1) and (Tp )(ArN)Mo(H)(PMe3) (2). Both 1 and 2 catalyze hydrosilylation of a variety of carbonyls. Detailed kinetic and DFT studies found that 1 reacts by an unexpected associative mechanism, which does not involve Si-H addition either to the imido group or the metal. Despite 1 being a d2 complex, its reaction with PhSiH3 proceeds via a a-bond metathesis mechanism giving the silyl derivative (Cp )(ArN)Mo(SiH2Ph)(PMe3). In the presence of BPh3 reaction of 1 with PhSiH3 results in formation of (Cp)(ArN)Mo(SiH2Ph)(H)2 and (Cp)(ArN)Mo(SiH2Ph)2(H), the first examples ofMo(VI) silyl hydrides. AI: 1 : 1 reaction between 2, PhSiD3 and carbonyl substrate established that hydrosilylation is not accompanied by deuterium incorporation into the hydride position of the catalyst, thus ruling out the conventional mechanism based on carbonyl insertion carbonyl. As 2 is nomeactive to both the silane and ketone, the only mechanistic alternative we are left with is that the metal center activates the carbonyl as a Lewis acid. The analogous nonhydride mechanism was observed for the catalysis by (ArN)Mo(H)(CI)(PMe3), (Ph3P)2(I)(O)Re(H)(OSiMe2Ph) and (PPh3CuH)6. Complex 2 also catalyzes hydroboration of carbonyls and nitriles. We report the first case of metal-catalyzed hydroboration of nitriles as well as hydroboration of carbonyls at very mild conditions. Conversion of carbonyl functions can be performed with high selectivities in the presence of nitrile groups. This thesis also reports the first case of the HlH exchange between H2 and Si-H of silanes mediated by Lewis acids such as Mo(IV) , Re(V) , Cu(I) , Zn(II) complexes, B(C6Fs)3 and BPh3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Mo(II) diimine derivatives of [Mo(q (3)allyl)X(CO)(2)(CH3CN)(2)] (allyl = C3H5 and C5H5O; X = Cl, Br) were prepared, and [MO(eta(3)-C3H5)Cl(CO)(2)(BIAN)] (BIAN = 1,4-(4-chloro)phenyl-2,3-naphthalene-diazabutadiene) (7) was structurally characterized by single-crystal X-ray diffraction. This complex adopted an equatorial-axial arrangement of the bidentate ligand (axial isomer), in contrast with the precursors, found as the equatorial isomer in the solid and fluxional in solution. The new complexes of the type [Mo(eta(3)-allyl)X(CO)(2)(N-N)l (N-N is a bidentate chelating dinitrogen ligand) were tested for the catalytic epoxidation of cyclooctene using tert-butyl hydroperoxide as oxidant. All catalytic systems were 100% selective toward epoxide formation. While their turnover frequencies paralleled those of related Mo(eta) carbonyl compounds or Mo(VI) compounds bearing similar N-donor ligands, they exhibited similar olefin conversions in consecutive catalytic runs. The acetonitrile precursors were generally more active than the diimine complexes, and the chloro derivatives more active than the bromo ones. Combined vibrational and NMR spectroscopy and computational studies (DFT) were used to investigate the nature of the molybdenum species formed in the catalytic system with [Mo(eta(3)-C3H5)Cl(CO)(2){1,4-(2,6-dimethyl)phenyl-2.3-dimethyldiazabuta diene}] (4) and to propose that the resulting species may be dimeric bearing oxide bridges.