229 resultados para MODULARITY
Resumo:
Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Williams syndrome (WS) is a rare genetic disorder resulting from a deletion on chromosome 7. A number of studies have shown that individuals with WS have a superior linguistic profile compared to their non-verbal abilities, however the evidence has been inconclusive, as many studies have disputed such a profile. The vast majority of studies on WS have assumed a single, homogeneous WS linguistic profile in order to support various theoretical viewpoints. The present study investigated the linguistic profiles of 5 individuals with WS on a number of standardized verbal measures and in conversational settings. The results indicated substantially variable performance in all aspects of the verbal domain, which supports the view that WS, linguistically, is a rather heterogeneous condition and this should be taken into consideration when referring to it in theoretical accounts of language acquisition and debates on modularity.
Resumo:
Research on social communication skills in individuals with Williams syndrome has been inconclusive, with some arguing that these skills are a relative strength and others that they are a weakness. The aim of the present study was to investigate social interaction abilities in a group of children with WS, and to compare them to a group of children with specific language impairment and a group of typically developing children. Semi-structured conversations were conducted and 100-150 utterances were selected for analysis in terms of exchange structure, turn taking, information transfer and conversational inadequacy. The statistical analyses showed that the children with WS had difficulties with exchange structure and responding appropriately to the interlocutor's requests for information and clarification. They also had significant difficulties with interpreting meaning and providing enough information for the conversational partner. Despite similar language abilities with a group of children with specific language impairment, the children with WS had different social interaction skills, which suggests that they follow an atypical trajectory of development and their neurolinguistic profile does not directly support innate modularity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs)-modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system.
Resumo:
Purpose - This paper aims to address some of the needs of present and upcoming rover designs, and introduces novel concepts incorporated in a planetary surface exploration rover design that is currently under development. Design/methodology/approach - The Multitasking Rover (MTR) is a highly re-configurable system that aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. It comprises a surface mobility platform which is highly re-configurable, which offers centre of mass re-allocation and rough terrain stability, and also a set of science/tool packs - individual subsystems encapsulated in packs which the rover picks up, transports and deploys. Findings - Early testing of the suspension system suggests exceptional performance characteristics. Originality/value - Principles employed in the design of the MTR can be used in future rover systems to reduce associated mission costs and at the same time provide multiples the functionality.
Resumo:
In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.
Resumo:
Mutualism-network studies assume that all interacting species are mutualistic partners and consider that all links are of one kind. However, the influence of different types of links, such as cheating links, on network organization remains unexplored. We studied two flower-visitation networks (Malpighiaceae and Bignoniaceae and their flower visitors), and divide the types of link into cheaters (i.e. robbers and thieves of flower rewards) and effective pollinators. We investigated if there were topological differences among networks with and without cheaters, especially with respect to nestedness and modularity. The Malpighiaceae network was nested, but not modular, and it was dominated by pollinators and had much fewer cheater species than Bignoniaceae network (28% versus 75%). The Bignoniaceae network was mainly a plant-cheater network, being modular because of the presence of pollen robbers and showing no nestedness. In the Malpighiaceae network, removal of cheaters had no major consequences for topology. In contrast, removal of cheaters broke down the modularity of the Bignoniaceae network. As cheaters are ubiquitous in all mutualisms, the results presented here show that they have a strong impact upon network topology.
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.
Resumo:
The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Tourism destination networks are amongst the most complex dynamical systems, involving a myriad of human-made and natural resources. In this work we report a complex network-based systematic analysis of the Elba (Italy) tourism destination network, including the characterization of its structure in terms of several traditional measurements, the investigation of its modularity, as well as its comprehensive study in terms of the recently reported superedges approach. In particular, structural (the number of paths of distinct lengths between pairs of nodes, as well as the number of reachable companies) and dynamical features (transition probabilities and the inward/outward activations and accessibilities) are measured and analyzed, leading to a series of important findings related to the interactions between tourism companies. Among the several reported results, it is shown that the type and size of the Companies influence strongly their respective activations and accessibilities, while their geographical position does not seem to matter. It is also shown that the Elba tourism network is largely fragmented and heterogeneous, so that it could benefit from increased integration. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Companies are focusing on efforts increasing the overall efficiency at the same time as the ability to meet customer needs becomes even more important. There is a need to improve the organisation and the product design at the same time through the visualisation of how a product family design should be performed in order to adapt to customers, company internal issues, and long-term strategy. Therefore, there is a need for qualified personnel in today’s companies with the knowledge of product development and modularity. The graduate course Development of Modular Products at Högskolan Dalarna has the objective to provide such knowledge. As a part of the course, each student will individually perform extensive research within a chosen area with respect to Product Development and Modularity. This proceeding is the result of the students own work and was presented during a two day seminar at Dalarna University. The contents of the papers cover many areas, from the identification of customer needs to cost effective manufacturing, and benefits of modularisation. The reader of this proceeding will not only benefit from many areas within Product Development and Modularity but also from the colour of many cultures. In this proceeding, students from nine countries are represented (Bangladesh, China, Costa Rica, Germany, Holland, India, Luxembourg Nigeria, and Sweden). Enjoy the reading.
Resumo:
In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.
Resumo:
MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.
Resumo:
High levels of local, regional, and global extinctions has progressively simplified communities in terms of both species and ecosystem functioning. Theoretical models demonstrated that the degree of functional redundancy determines the rates of functional group loss in response to species extinctions. Here, we improve the theoretical predictions by incorporating in the model interactions between species and between functional groups. In this study, we tested the effect of different scenarios of interspecific interactions and effects between functional groups on the resistance to loss of community functional groups. Virtual communities have been built with different distribution patterns of species in functional groups, both with high and low evenness. A matrix A was created to represent the net effect of interspecific interactions among all species, representing nesting patterns, modularity, sensitive species, and dominant species. Moreover, a second matrix B was created to represent the interactions between functional groups, also exhibiting different patterns. The extinction probability of each species was calculated based on community species richness and by the intensity of the interspecific interactions that act upon it and group to which it belongs. In the model, successive extinctions decrease the community species richness, the degree of functional redundancy and, consequently, the number of functional groups that remain in the system. For each scenario of functional redundancy, A, and B, we ran 1000 simulations to generate an average functional extinction curve. Different model assumptions were able to generate remarkable variation on functional extinction curves. More extreme variations occurred when the matrix A and B caused a higher heterogeneity in the species extinction probability. Scenarios with sensitive species, positive or negative, showed a greater variation than the scenarios with dominant species. Nested interactions showed greater variation than scenarios where the interactions were in modules. Communities with maximal functional evenness can only be destabilized by the interactions between species and functional groups. In contrast, communities with low functional evenness can have its resistance either increased or decreased by the interactions. The concentration of positive interactions in low redundancy groups or negative interactions in high redundancy groups was able to decrease the functional extinction rates. In contrast, the concentration of negative interactions in low redundancy groups or positive interactions in high redundancy groups was able to increase the functional extinction rates. This model shows results that are relevant for species priorization in ecosystem conservation and restoration