940 resultados para METHYL JASMONATE
Resumo:
After primary growth, most dicotyledonous plants undergo secondary growth. Secondary growth involves an increase in the diameter of shoots and roots through formation of secondary vascular tissue. A hallmark of secondary growth initiation in shoots of dicotyledonous plants is the initiation of meristematic activity between primary vascular bundles, i.e. in the interfascicular regions. This results in establishment of a cylindrical meristem, namely the vascular cambium. Surprisingly, despite its major implications for plant growth and the accumulation of biomass, the molecular regulation of secondary growth is only poorly understood. Here, we combine histological, molecular and genetic approaches to characterize interfascicular cambium initiation in the Arabidopsis thaliana inflorescence shoot. Using genome-wide transcriptional profiling, we show that stress-related and touch-inducible genes are up-regulated in stem regions where secondary growth takes place. Furthermore, we show that the products of COI1, MYC2, JAZ7 and the touch-inducible gene JAZ10, which are components of the JA signalling pathway, are cambium regulators. The positive effect of JA application on cambium activity confirmed a stimulatory role of JA in secondary growth, and suggests that JA signalling triggers cell divisions in this particular context.
Resumo:
BACKGROUND: There is some evidence that dextromethorphan (DM) is effective as a pre-emptive analgesic agent. DM is mainly metabolized to dextrorphan (DOR) by CYP2D6 whose activity can be inhibited by pharmacologic intervention. OBJECTIVES: To investigate the efficacy of DM as a pre-emptive analgesic agent and describe the population pharmacokinetics in the presence of normal and poor CYP2D6 metabolism in acute post-operative pain. STUDY DESIGN: Double blind, randomized, placebo-controlled trial SETTING: Post-surgical analgesic consumption after knee ligament surgery, a setting of acute pain. METHODS: Forty patients were randomized to a single oral dose of 50 mg quinidine or placebo, administered 12 hours before 50 mg DM. Patients were genotyped for the major CYP2D6 and ABCB1 variants and phenotyped for CYP2D6 using urine DM/DOR metabolic ratios and blood samples for population pharmacokinetic modeling. RESULTS: Quinidine was effective in inhibiting CYP2D6 activity, with 2-fold reduction of DM to DOR biotransformation clearance, prolonged DM half-life, and increased DM systemic availability. Patients in the quinidine group required significantly less often NSAIDs than patients in the placebo group (35.3% vs. 75.0%, P = 0.022). The odds ratio for NSAID consumption in the placebo vs. quinidine group was 5.5 (95% confidence interval (CI) 1.3 - 22.7) at 48 hours after surgery. LIMITATIONS: While this study shows an impact of DM on pre-emptive analgesia and is mechanistically interesting, the findings need to be confirmed in larger trials. CONCLUSION: CYP2D6 inhibition by quinidine influenced the pre-emptive analgesic effectiveness of DM confirming that CYP2D6 phenotypic switch increases the neuromodulatory effect of oral dextromethorphan.
Resumo:
Effect of silicon and acibenzolar-s-methyl on colored cotton plants infested or not with Aphis gossypii Glover (Hemiptera, Aphididae). The aphid Aphis gossypii is an insect pest that causes damage mainly at the beginning of the cotton plant development. The effect of resistance inductors silicon and acibenzolar-s-methyl (ASM) on the development of colored cotton plants were researched in the presence and absence of A. gossypii. Three colored cotton cultivars were sown in pots and individually infested with 25 apterous aphids, 13 days after the application of the inductors. Fifteen days after plant emergence, the silicon was applied at a dosage equivalent to 3 t/ha and acibenzolar-s-methyl in 0.2% solution of the product BION 500®. After 21 days of infestation the following parameters were evaluated: plant height, stem diameter, dry matter of aerial part and root, and total number of aphids replaced. It was verified that the plant height was reduced in the presence of aphids and all variables were negatively affected by the application of ASM. However, silicon did not affect plant development.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Damage-inducible defenses in plants are controlled in part by jasmonates, fatty acid-derived regulators that start to accumulate within 30 s of wounding a leaf. Using liquid chromatography-tandem mass spectrometry, we sought to identify the 13-lipoxygenases (13-LOXs) that initiate wound-induced jasmonate synthesis within a 190-s timeframe in Arabidopsis thaliana in 19 single, double, triple and quadruple mutant combinations derived from the four 13-LOX genes in this plant. All four 13-LOXs were found to contribute to jasmonate synthesis in wounded leaves: among them LOX6 showed a unique behavior. The relative contribution of LOX6 to jasmonate synthesis increased with distance from a leaf tip wound, and LOX6 was the only 13-LOX necessary for the initiation of early jasmonate synthesis in leaves distal to the wounded leaf. Herbivory assays that compared Spodoptera littoralis feeding on the lox2-1 lox3B lox4A lox6A quadruple mutant and the lox2-1 lox3B lox4A triple mutant revealed a role for LOX6 in defense of the shoot apical meristem. Consistent with this, we found that LOX6 promoter activity was strong in the apical region of rosettes. The LOX6 promoter was active in and near developing xylem cells and in expression domains we term subtrichomal mounds.
Resumo:
Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant's ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Resumo:
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.
Resumo:
Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.
Resumo:
We studied constitutive and induced defensive traits (latex exudation, cardenolides, proteases, and C/N ratio) and resistance to monarch caterpillars (Danaus plexippus) in three closely related milkweed species (Asclepias angustifolia, A. barjoniifolia and A. fascicularis). All traits showed significant induction in at least one of the species. Jasmonate application only partially mimicked the effect of monarch feeding. We found some correspondence between latex and cardenolide content and reduced larval growth. Larvae fed cut leaves of A. angustifolia grew better than larvae fed intact plants. Addition of the cardenolide digitoxin to cut leaves reduced larval growth but ouabain (at the same concentration) had no effect. We, thus, confirm that latex and cardenolides are major defenses in milkweeds, effective against a specialist herbivore. Other traits such as proteases and C/N ratio additionally may be integrated in the defense scheme of those plants. Induction seems to play an important role in plants that have an intermediate level of defense, and we advocate incorporating induction as an additional axis of the plant defense syndrome hypothesis.
Resumo:
Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell-to-cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long-distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cmmin(-1) to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR-LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR-dependent mechanism to promote distal jasmonate synthesis.
Resumo:
Compounds containing alpha,beta-unsaturated carbonyl groups are increasingly implicated as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at the site of lesion formation in host-pathogen interactions. We used a robust measurement of photosynthetic efficiency to quantify the toxicity of a variety of lipid derivatives in Arabidopsis leaves. Small alpha,beta-unsaturated carbonyl compounds (e.g. acrolein and methyl vinyl ketone) were highly active and proved to be potent stimulators of expression of the pathogenesis-related gene HEL (PR4). These small volatile electrophiles were far more active than larger alkenal homologs like 2(E)-hexenal, and activated HEL expression in a manner independent of salicylate, ethylene, and jasmonate production/perception. Electrophile treatment massively increased the levels of unesterified cyclopentenone jasmonates, which themselves are electrophiles. Patterns of gene expression in response to electrophile treatment and in response to avirulent bacteria were compared, which revealed strikingly similar transcript profiles. The results broaden the range of known biologic effects of reactive electrophile species to include the activation of a pathogenesis-related gene (HEL) and genes involved in metabolism. Electrophiles can act as mediators of both genetic and biochemical effects on core defense signal transduction.
Resumo:
The jasmonate signal pathway is known to control defenses against herbivores, such as leaf eaters (folivores). Does the reach of the pathway extend to defense against other types of animal? Among the arthropods attracted to seed baits placed below flowering Arabidopsis thaliana plants are 2 largely nocturnal isopod crustaceans generally considered as detritivores: Porcellio scaber and Armadillidium vulgare. Parallel laboratory experiments identified the isopods as being capable of predation on intact plants. Isopod feeding was strongly facilitated in jasmonate-deficient Arabidopsis and rice plants. The feeding activity of isopods revealed potentially detritivore-sensitive, jasmonate-protected Achilles' heels in these architecturally different plants (petioles and inflorescence stems in Arabidopsis, and lower stem and mesocotyl in rice). The work addresses the question of what stops 2 detritivores from attacking living plants and provides evidence that it is, in part, the jasmonate signal pathway. Furthermore, senescent leaves from an Arabidopsis jasmonate mutant were consumed more rapidly than senescent wild-type leaves, suggesting that past activity of the jasmonate signal pathway in leaves may slow carbon recycling through detritivory.
Resumo:
Jasmonates control defense gene expression, growth, and fertility throughout the plant kingdom and have been studied extensively in Arabidopsis thaliana. The prohormone jasmonic acid (JA) is conjugated to amino acids such as isoleucine to form the active hormone jasmonoyl-isoleucine (JA-Ile). A series of breakthroughs has identified the SCF [SCF consists of four subunits: a cullin, SKP1 (S-phase kinase-associated protein 1), a RING finger protein (RBX1/HRT1/ROC1), and an F-box protein] CORONATINE INSENSITIVE1 (COI1) E3 ubiquitin ligase complex and the JASMONATE ZIM-DOMAIN (JAZ) proteins as central components in the perception of and transcriptional response to JA-Ile. JAZ proteins (most probably as dimers) bind transcription factors such as MYC2 before JA-Ile production. JA-Ile binds to COI1 to facilitate the formation of COI1-JAZ complexes, leading to ubiquitination and subsequent degradation of JAZ proteins. The degradation of JAZ proteins liberates transcription factors that function in the presence of the RNA polymerase II coregulatory complex Mediator to permit the expression of a number of jasmonate-regulated genes. Recent developments include the identification of COI1 as a receptor for jasmonates. Upstream of the signaling events, microRNA319 (miR319) negatively regulates the production of JA and JA-derived signals.