988 resultados para MESON BOUND-STATES
Resumo:
In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential alpha x(-2). Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some `paradoxes` inherent in the `naive` quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.
Resumo:
Odorant receptors and other chemoreceptors are usually poorly expressed in the plasma membrane of heterologous cells. A key point of regulation in G protein-mediated signaling is the interconversion between the active GTP-bound and inactive GDP-bound states of the G alpha subunit, which regulatory proteins, such as guanine nucleotide exchange factors (GEFs), can control. GEFs stimulate formation of the GTP-bound state of G alpha and therefore are considered to work as positive regulators of G protein-coupled receptor signaling. Ric-8B, a GEF that is specifically expressed in olfactory sensory neurons, promotes functional expression of odorant receptors in HEK293T cells because it amplifies the initially low receptor signaling through G alpha olf. This same strategy could be used to functionally express other types of chemoreceptors.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and gamma(5) chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry-related problems have the same spectrum but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector, and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The problem of computing the effective nonrelativistic potential U-D for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U-3 cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
Resumo:
Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.
Resumo:
A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark model. The model is amenable to standard many-body techniques such as the BCS and random phase approximation formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the pion-nucleon form factor and the calculation of picnic self-energy corrections to the nucleon and Delta (1232) masses.
Resumo:
Effective chiral Lagrangians involving constituent quarks, Goldstone bosons and long-distance gluons are believed to describe the strong interactions in an intermediate energy region between the confinement scale and the chiral symmetry breaking scale. Baryons and mesons in such a description are bound states of constituent quarks. We discuss the combined use of the techniques of effective chiral field theory and of the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between two nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of nuclear matter using this formalism.