962 resultados para MEDIATED IMMUNE-RESPONSES
Resumo:
Helicobacter pylori (H. pylori) infection is one of the most common infections in human beings worldwide. H. pylori express lipopolysaccharides and flagellin that do not activate efficiently Toll-like receptors and express dedicated effectors, such as γ-glutamyl transpeptidase, vacuolating cytotoxin (vacA), arginase, that actively induce tolerogenic signals. In this perspective, H. pylori can be considered as a commensal bacteria belonging to the stomach microbiota. However, when present in the stomach, H. pylori reduce the overall diversity of the gastric microbiota and promote gastric inflammation by inducing Nod1-dependent pro-inflammatory program and by activating neutrophils through the production of a neutrophil activating protein. The maintenance of a chronic inflammation in the gastric mucosa and the direct action of virulence factors (vacA and cytotoxin-associated gene A) confer pro-carcinogenic activities to H. pylori. Hence, H. pylori cannot be considered as symbiotic bacteria but rather as part of the pathobiont. The development of a H. pylori vaccine will bring health benefits for individuals infected with antibiotic resistant H. pylori strains and population of underdeveloped countries.
Resumo:
Host resistance to Leishmania major is highly dependent on the development of a Th1 immune response. The TLR adaptator myeloid differentiation protein 88 (MyD88) has been implicated in the Th1 immune response associated with the resistant phenotype observed in C57BL/6 mice after infection with L. major. To investigate whether the MyD88 pathway is differentially used by distinct substrains of parasites, MyD88(-/-) C57BL/6 mice were infected with two substrains of L. major, namely L. major LV39 and L. major IR75. MyD88(-/-) mice were susceptible to both substrains of L. major, although with different kinetics of infection. The mechanisms involved during the immune response associated with susceptibility of MyD88(-/-) mice to L. major is however, parasite substrain-dependent. Susceptibility of MyD88(-/-) mice infected with L. major IR75 is a consequence of Th2 immune-deviation, whereas susceptibility of MyD88(-/-) mice to infection with L. major LV39 resulted from an impaired Th1 response. Depletion of regulatory T cells (Treg) partially restored IFN-gamma secretion and the Th1 immune response in MyD88(-/-) mice infected with L. major LV39, demonstrating a role of Treg activity in the development of an impaired Th1 response in these mice.
Resumo:
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including cancer. In the last decade, it became evident that Notch signaling plays important roles within the hematopoietic and immune systems. Notch plays an essential role in the development of embryonic hematopoietic stem cells and influences multiple lineage decisions of developing lymphoid and myeloid cells. Moreover, recent evidence suggests that Notch is an important modulator of T cell-mediated immune responses. In this review, we discuss Notch signaling in hematopoiesis, lymphocyte development, and function as well as in T cell acute lymphoblastic leukemia.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Neuropathic pain is a clinical manifestation of nerve injury difficult to treat even with potent analgesic compounds. Here, we used different lines of genetically modified mice to clarify the role played by CB2 cannabinoid receptors in the regulation of the central immune responses leading to the development of neuropathic pain. CB2 knock-out mice and wild-type littermates were exposed to sciatic nerve injury, and both genotypes developed a similar hyperalgesia and allodynia in the ipsilateral paw. Most strikingly, knock-outs also developed a contralateral mirror image pain, associated with an enhanced microglial and astrocytic expression in the contralateral spinal horn. In agreement, hyperalgesia, allodynia, and microglial and astrocytic activation induced by sciatic nerve injury were attenuated in transgenic mice overexpressing CB2 receptors. These results demonstrate the crucial role of CB2 cannabinoid receptor in modulating glial activation in response to nerve injury. The enhanced manifestations of neuropathic pain were replicated in irradiated wild-type mice reconstituted with bone marrow cells from CB2 knock-outs, thus demonstrating the implication of the CB2 receptor expressed in hematopoietic cells in the development of neuropathic pain at the spinal cord.
Resumo:
Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease caused by uncontrolled polyomavirus JC (JCV) in severely immunodeficient patients. We investigated the JCV-specific cellular and humoral immunity in the Swiss HIV Cohort Study. We identified PML cases (n = 29), as well as three matched controls per case (n = 87), with prospectively cryopreserved peripheral blood mononuclear cells and plasma at diagnosis. Nested controls were matched according to age, gender, CD4(+) T-cell count, and decline. Survivors (n = 18) were defined as being alive for >1 year after diagnosis. Using gamma interferon enzyme-linked immunospot assays, we found that JCV-specific T-cell responses were lower in nonsurvivors than in their matched controls (P = 0.08), which was highly significant for laboratory- and histologically confirmed PML cases (P = 0.004). No difference was found between PML survivors and controls or for cytomegalovirus-specific T-cell responses. PML survivors showed significant increases in JCV-specific T cells (P = 0.04) and immunoglobulin G (IgG) responses (P = 0.005). IgG responses in survivors were positively correlated with CD4(+) T-cell counts (P = 0.049) and negatively with human immunodeficiency virus RNA loads (P = 0.03). We conclude that PML nonsurvivors had selectively impaired JCV-specific T-cell responses compared to CD4(+) T-cell-matched controls and failed to mount JCV-specific antibody responses. JCV-specific T-cell and IgG responses may serve as prognostic markers for patients at risk.
Resumo:
We have recently described 95 predicted alpha-helical coiled-coil peptides derived from putative Plasmodium falciparum erythrocytic stage proteins. Seventy peptides recognized with the highest level of prevalence by sera from three endemic areas were selected for further studies. In this study, we sequentially examined antibody responses to these synthetic peptides in two cohorts of children at risk of clinical malaria in Kilifi district in coastal Kenya, in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Antibody levels from 268 children in the first cohort (Chonyi) were assayed against 70 peptides. Thirty-nine peptides were selected for further study in a second cohort (Junju). The rationale for the second cohort was to confirm those peptides identified as protective in the first cohort. The Junju cohort comprised of children aged 1-6 years old (inclusive). Children were actively followed up to identify episodes of febrile malaria in both cohorts. Of the 70 peptides examined, 32 showed significantly (p<0.05) increased antibody recognition in older children and 40 showed significantly increased antibody recognition in parasitaemic children. Ten peptides were associated with a significantly reduced odds ratio (OR) for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and AS202.11) were associated with a significantly reduced OR in both cohorts. LR146 is derived from hypothetical protein PFB0145c in PlasmoDB. Previous work has identified this protein as a target of antibodies effective in antibody dependent cellular inhibition (ADCI). The current study substantiates further the potential of protein PFB0145c and also identifies protein PF11_0424 as another likely target of protective antibodies against P. falciparum malaria
Between Immunology And Tolerance: Controlling Immune Responses Employing Tolerogenic Dendritic Cells
Resumo:
Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.
Resumo:
To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.
Resumo:
To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.
Resumo:
Tumor antigen-specific CD4(+) T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4(+) T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4(+) helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4(+) T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8(+) T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8(+) T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients.
Resumo:
Nanoparticulate formulations for synthetic long peptide (SLP)-cancer vaccines as alternative to clinically used Montanide ISA 51- and squalene-based emulsions are investigated in this study. SLPs were loaded into TLR ligand-adjuvanted cationic liposomes and PLGA nanoparticles (NPs) to potentially induce cell-mediated immune responses. The liposomal and PLGA NP formulations were successfully loaded with up to four different compounds and were able to enhance antigen uptake by dendritic cells (DCs) and subsequent activation of T cells in vitro. Subcutaneous vaccination of mice with the different formulations showed that the SLP-loaded cationic liposomes were the most efficient for the induction of functional antigen-T cells in vivo, followed by PLGA NPs which were as potent as or even more than the Montanide and squalene emulsions. Moreover, after transfer of antigen-specific target cells in immunized mice, liposomes induced the highest in vivo killing capacity. These findings, considering also the inadequate safety profile of the currently clinically used adjuvant Montanide ISA-51, make these two particulate, biodegradable delivery systems promising candidates as delivery platforms for SLP-based immunotherapy of cancer.
Resumo:
T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.
Resumo:
T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.