922 resultados para MCAD deficiency
Resumo:
Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.
Resumo:
Background Metronidazole is the most commonly used antimicrobial for Bacteroides fragilis infections and is recommended for prophylaxis of colorectal surgery. Metronidazole resistance is increasing and the mechanisms of resistance are not clear.
Methods A transposon mutant library was generated in B. fragilis 638R (BF638R) to identify the genetic loci associated with resistance to metronidazole.
Results Thirty-two independently isolated metronidazole-resistant mutants had a transposon insertion in BF638R_1421 that encodes the ferrous transport fusion protein (feoAB). Deletion of feoAB resulted in a 10-fold increased MIC of metronidazole for the strain. The metronidazole MIC for the feoAB mutant was similar to that for the parent strain when grown on media supplemented with excess iron, suggesting that the increase seen in the MIC of metronidazole was due to reduced cellular iron transport in the feoAB mutant. The furA gene repressed feoAB transcription in an iron-dependent manner and disruption of furA resulted in constitutive transcription of feoAB, regardless of whether or not iron was present. However, disruption of feoAB also diminished the capacity of BF638R to grow in a mouse intraperitoneal abscess model, suggesting that inorganic ferrous iron assimilation is essential for B. fragilis survival in vivo.
Conclusions Selection for feoAB mutations as a result of metronidazole treatment will disable the pathogenic potential of B. fragilis and could contribute to the clinical efficacy of metronidazole. While mutations in feoAB are probably not a direct cause of clinical resistance, this study provides a key insight into intracellular metronidazole activity and the link with intracellular iron homeostasis.
Resumo:
Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown.
Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (GxE interaction) was identified.
Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4 degrees C.
Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this GxE interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.
Resumo:
Introduction:
Ovarian cancer patients presenting with advanced stage (III/IV)
canceraretreatedwithcarboplatinumincombinationwithpaclitaxel.Despitea
significant initial response rate, fewer than 20% of patients become long-term
survivors. We have published that low MAD2 expression levels associate with
reduced progression free survival (PFS) in patients with high-grade serous
epithelial ovarian cancer (EOC). Moreover, we have demonstrated that MAD2
expressionisdown-regulatedbythemicroRNAmiR-433(
Furlong et al., 2011
).
Interestingly, miR-433 also down-regulates HDAC6 (
Simon et al., 2010
), which
uniquely deacetylates
a
-tubulin prior to HDAC6s binding to
b
-tubulin.
In vitro
studies have shown that HDAC6 inhibition in combination with paclitaxel
treatment enhances chemoresistant cancer cell death. To date, an interaction
between MAD2 and HDAC6 has not been reported.
Experimental design:
MAD2 and HDAC6 immunohistochemistry (IHC) and
Western blot analyses were performed to investigate the role of HDAC6 and
MAD2 in chemoresistance to paclitaxel in high-grade serous EOC.
Results and Discussion:
In vitro
experiments demonstrated that overex-
pression of pre-miR-433, which targets MAD2, resulted in down-regulation
of HDAC6 in EOC cell lines. High levels of HDAC6 are co-expressed with
MAD2 in the paclitaxel resistant UPN251 and OVCAR7 cell lines. While, all
4 paclitaxel resistant EOC cell lines express higher levels of miR-433 than
the paclitaxel sensitive A2780 cells, only ovca432 and ovca433 demonstrated
down-regulation of both HDAC6 and MAD2. Paclitaxel binds to
b
-tubulin and
causesmicrotubulepolymerizationinpaclitaxelsensitivecellsasdemonstrated
by tubulin acetylation in A2780 cells. However, paclitaxel failed to cause a
significant acetylation of
a
-tubulin and microtubule stabilisation in the resistant
UPN251 cells. Therefore resistance in this cell line may be mediated by
aberrantly high HDAC6 activity. We have previously shown that MAD2 knock-
down cells are resistant to paclitaxel (
Furlong F., et al., 2011; Prencipe M.,
et al., 2009
). We measured HDAC6 protein expression in MAD2 knockdown
cells and showed that MAD2 knockdown is associated with concomitant
up-regulation of HDAC6. We hypothesise that the up-regulation of HDAC6
by MAD2 knockdown renders cancer cells more resistant to paclitaxel and
increases the invasive potential of these cells. On-going experiments will test
this hypothesis. Lastly we have observed differential MAD2 and HDAC6 IHC
staining intensity in formalin fixed paraffin embedded EOC samples.
In conclusion
, we have reported on a novel interaction between MAD2 and
HDAC6 which may have important consequences for paclitaxel resistant EOC.
Moreover, understanding chemo-responsiveness in ovarian tumours will lead
to improved patient management and treatment options for women diagnosed
with this disease
Resumo:
Objective: Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes.
Approach and Results: In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation.
Conclusions: This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.
Resumo:
PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.
Resumo:
Disertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
CONTEXT: Existing data regarding the association between growth hormone deficiency (GHD) and liver fat content are conflicting. OBJECTIVE: We aimed i) to assess intrahepatocellular lipid (IHCL) content in hypopituitary adults with GHD compared to matched controls and ii) to evaluate the effect of growth hormone (GH) replacement on IHCL content. DESIGN: Cross-sectional comparison and controlled intervention study. PATIENTS, PARTICIPANTS: Cross-sectional comparison: 22 hypopituitary adults with GHD and 44 healthy controls matched for age, BMI, gender and ethnicity. Intervention study: 9 GHD patients starting GH replacement (GH Rx group), 9 GHD patients not starting replacement therapy (non-GH Rx group). INTERVENTION: Intervention study:GH replacement for 6 months in the GH Rx group, dosage was titrated to achieve normal IGF-1 levels. MAIN OUTCOME MEASURES: IHCL content determined by proton magnetic resonance spectroscopy (1 H MRS). RESULTS: Cross-sectional comparison: There was no difference in IHCL content between GHD patients and healthy controls (1.89% (0.30, 4.03) vs. 1.14% (0.22, 2.32); p=0.2), the prevalence of patients with hepatic steatosis (IHCL of ≥ 5.56%) was similar in the two groups (22.7% vs. 15.9%; chi square probability = 0.4). Intervention study: The change in IHCL content over 6 months did not differ between the GH Rx group and the non-GH Rx group (-0.63 ± 4.53% vs. +0.11 ± 1.46%; p=0.6). CONCLUSIONS: In our study liver fat content and the prevalence of hepatic steatosis did not differ between hypopituitary adults with GHD and matched controls. In GHD patients GH replacement had no effect on liver fat content.