954 resultados para MAIZE YIELD
Resumo:
A field trial was carried out in Brazil in March 2002 with the aim to evaluate the effects of different timing and extension of weedy period on maize productivity. The hybrid Pioneer 30K75 was sowed under 7 t ha(-1) mulching promoted by glyphosate spraying. The treatments were divided in two groups: In the first group, weeds were maintained since the maize sowing until different periods in the crop cycle: 0, 14, 28, 42, 56, 70, and 150 days (harvesting time). In the second group, the maize crop was kept weed free for the same periods of the first group. Weed control was done through hand hoeing. A complete randomized blocks experimental design with five replications was used for plots distribution in the field. Nonlinear regression model was used to study the effects of weedy or weedfree periods on maize productivity. Weed community included 13 families and 31 species. Asteraceae, Poaceae, and Euphorbiaceae were the most abundant families. Results showed that under no tillage condition with 7 t ha-1 mulching at sowing time, the maize crop could cohabit with weed community for 54 days without any yield lost. on the other hand, if the crop was kept weed free for 27 days, the weed interference was not enable to reduce maize production. According to these results one weed control measure between 27 and 54 days after crop emergence could be enough to avoid any reduction in maize productivity.
Resumo:
The purpose of this study was to verify the breeding potential of the maize composite Isanao VF1 in the second growing season. One hundred and fifty half-sib progenies were evaluated of spacing of 0.45 m, densities of 57,778 and 80,000 plants ha(-1), in a randomized block design with three replications. Gains of 16.0 and 19.2% were estimated for grain Yield, H. I and 10.5% for prolificacy and 12.3 and 12.9% for ear height, respectively, at 57,778 and 80,000 plants ha(-1). The heritabilities for plant height, ear height and grain yield were 65.2 and 61.3%, 64.3 and 66.9% and 53.5 and 63.3%, respectively, confirming the potential for breeding at both densities. The absence of progeny by density interaction indicates that no further selection programs are necessary. The occurrence of segregation for modifier genes for height suggests stabilizing selection based on ear height.
Resumo:
A boa produtividade e os valores intermediários para altura da planta e altura da espiga caracterizam a população de milho ESALQ-PB1 como agronomicamente promissora. São relatadas estimativas de parâmetros para 13 caracteres: altura da planta (PH), altura da espiga (EH), posição relativa da espiga (EP), comprimento do pendão (TL), peso do pendão (TW), número de ramificações do pendão (TB), peso de espigas (EW), peso de grãos (GW), comprimento da espiga (EL), diâmetro da espiga (ED), número de fileiras de grãos (RN), número de grãos por fileira (KR) e prolificidade (PR). Os resultados se referem a um único ambiente (um local e um ano). Foi detectada variação genética para todos os caracteres, e são apresentadas estimativas da variância genética aditiva. Os coeficientes de herdabilidade (indivíduos) variaram de 0,14 a 0,72 e foram considerados altos para PH, EH e TB; intermediários para EP, TL, TW, EL e ED, e baixos para EW, GW, KR e PR. O coeficiente de herdabilidade para médias de progênies mostrou aproximadamente a mesma tendência, variando de 0,40 a 0,75. O maior ganho esperado por seleção foi para TB (27% por ciclo) sob seleção massal e para TW (16,4%) por seleção entre progênies; o menor ganho esperado foi para ED, tanto por seleção massal (1,9%) como por seleção entre progênies (2,9%). Coeficientes de correlação aditiva (rA) 0.5
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although mineral nutrition affects maize (Zea mays L.) yield by controlling starch deposition in kernels, the mechanisms involved are largely unknown. Our objectives were to examine this relationship by nutritionally and genetically altering starch production in the endosperm. Kernels of W64A and two starch-deficient mutants, shrunken-1 and brittle-2, were grown in vitro with varying supplies of N (0-50 mM) or P (0-6 mM) to produce different degrees of endosperm starch production, and the levels of enzyme activities and metabolites associated with carbohydrate and N metabolism were examined. In vitro grown kernels exhibited the expected starch phenotypes, and a minimum level of media N (25 mM) and P (2 mM) was required for optimal growth. However, increasing the availability of N or P could not overcome the genetically induced decrease in starch deposition of the mutants. Nitrogen deficiency enhanced sugar accumulation, but decreased amino acid levels, soluble protein, enzyme activity, starch synthesis, and endosperm dry weight. Phosphorous deficiency also decreased starch production and endosperm dry weight, but with only a minimal effect on the activities of ADP-glucose pyrophosphorylase and alanine transaminase. Genotypic differences in endosperm starch, and the increases induced by N and P supply, Here closely associated with the level of endosperm N, but not endosperm P. Thus, while both N and P are crucial for optimal yield of maize grain, they appear to act by different means, and with different importance in governing starch deposition in the endosperm.
Resumo:
Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.
Resumo:
Yields and starch pasting characteristics obtained from wet milling of maize samples with low and high levels of defect grains were compared to those from sound samples. Defect grain groups ere established taking into account the defect degree. Thus the first group consisted of fermented, molded, heated and sprouted grains and the second of insect damaged. hollow, fermented (up to 1/4) grains and those injured by other causes. The grain groups, if present at low levels in the samples, 10% for first group and 17% for second group did not affect the chemical composition of starch and its pasting properties. obtained by the rapid visco analyser. Samples with high levels of grain groups (up to 100%). affected wet milling yields and starch viscosity. Samples with 100% of grains in the first group decreased starch, germ yield and peak viscosity and increased gluten yield. Samples with 100% of grains in the second group decreased germ and fiber yield but increased starch yield. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The original brachytic population 'Dent Single Cross Composite' (DSCC-br2br2) and a selection-derived sub-population with modified plant architecture (DSCC-br2br2-Lg3Lg3, selected for erect leaves), were evaluated for the following characteristics number of vascular bundles of greater and smaller size, total vascular tissue area (phloem and xylem), sustaining tissue area (vascular tissue plus sclerenchyma), phloem and sclerenchyma areas in apical, medial and basal portions from midclub and in apical and basal sheath regions (from second leaf above and first below ear insertion). These variables had different values for the five different sections studied in each leaf and these differences did not have the same pattern in the two DSCC populations (brachytic and with modified architecture). Selection for architectural modification caused some indirect foliar anatomical modifications. With the exception of the phloem and the vascular tissue areas in apical leaf and sheath base regions, the modified plant architecture population showed smaller values of sustaining tissue area, sclerenchyma area, vascular tissue area and number of smaller vascular bundles than the original one. In the ligule region the modified maize leaves had smaller vascular and sustaining tissue areas, reducing transportation area, which could reduce gram yield.
Resumo:
The intermittent milling and dynamic steeping (IMDS) process is an alternative method developed for wet milling of maize. In this process, the steeping stage can be reduced to 5 h by soaking maize in water at 60°C for 2 h and cracking the kernels to remove solution components diffusional barriers with minimum germ damage. Maize was dynamically steeped in solutions with 0.0, 0.1, and 0.2% sulphur dioxide (SO2) and 0.00, 0.55% lactic acid. Germ recovery, germ damage, fibre in germ, oil content and uncracked kernels were determined. A conventional steeping procedure was also performed. Germ recovery was higher for all tests using both SO2 and lactic acid than for the others with best germ yield for concentrations of 0.2% SO2 and 0.55% lactic acid. Germ damage ranged from 7.4 to 18.2% for all tests. The presence of lactic acid in the steeping solution decreased the amount of fibre in germ fraction. Germ oil content ranged from 39.3% (0-0% SO2, 0.55% lactic acid) to 44.0% (0.2% SO2, 0.55% lactic acid) for all treatments using IMDS. The smallest difference was 5.5% between IMDS (0.2% SO2, 0.55% lactic acid) and the conventional 36 h steeping process. An average of 1.3% of kernels remained uncracked after IMDS process. © 2002 Silsoe Research Institute. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Sewage sludge produced by the SABESP wastewater treatment plant (Companhia de Saneamento Básico do Estado de São Paulo), located in Barueri, SP, Brazil, may contain high contents of nickel (Ni), increasing the risk of application to agricultural soils. An experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the effects on soil properties and on maize plants of increasing rates of a sewage sludge rich in Ni that had been applied for 6 consecutive years. The experiment was located on a Typic Haplorthox soil, using an experimental design of randomized blocks with four treatments (rates of sewage sludge) and five replications. At the end of the experiment the accumulated amounts of sewage sludge applied were 0.0, 30.0, 60.0 and 67.5 t ha-1. Maize (Zea mays L.) was the test plant. Soil samples were collected 60 d after sowing at depths of 0-20 cm for Ni studies and from 0 to 10 cm and from 10 to 20 cm for urease studies. Sewage sludge did not cause toxicity or micronutrient deficiencies to maize plants and increased grain production. Soil Ni appeared to be associated with the most stable fractions of the soil organic matter and was protected against strong extracting solutions such as concentrated and hot HNO3 and HCl. Ni added to the soil by sewage sludge increased the metal concentration in the shoots, but not in the grain. The Mehlich 3 extractor was not efficient to evaluate Ni phytoavailability to maize plants. Soil urease activity was increased by sewage sludge only in the layer where the residue was applied. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.
Resumo:
The objective of this study was to evaluate the direct and indirect effects of ten quantitative descriptors of agronomic importance in productivity of 25 maize hybrids and their respective influences of heritability. The experiment in randomized blocks with four replications, was conducted in 2010/2011 crop in a soil under humid subtropical climate. The quantitative descriptors were: ear length, ear diameter, cob diameter, number of rows of grains, stem diameter, plant height, ear height, weight of 100 grains, grain weight per ear and number of grains per ear. The grain weight per ear and ear length showed high correlation with grain yield, and the descriptors with the highest potential for selecting superior genotypes and showing high heritability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two experiments with 25 maize commercial hybrids were carried out in a direct sowing system in Southern Brazil in the harvests of 2009/2010 and 2010/2011. Quantitative descriptors were used with the objective of determining the genetic divergence and the relative contributions of traits among hybrids for extraction of inbred lines. This study was carried out in Oxisol soil using a randomized block design with four replicates. Data were subjected to combined analysis of variance, and based on the multivariate analyses, Tocher and average linkage (UPGMA) cluster analyses, based on generalized distance of Mahalanobis, to quantify divergence in addition to Singh criterion to validate trait with the most contribution. The multivariate methods were consistent with each other, and the weight of 100 grains was the trait that contributed most to the divergence and had similar behavior in grain yield between hybrids in both years. Furthermore, this descriptor representing significant genetic variability for crossings and lines extraction to hybridization between BM 3061, ATL 200 and P 30B39 Y.
Resumo:
The aim of the work was to evaluate the productivity, leaf nutrient content and soil nutrient concentration in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees-TS), after two years of cultivation following a randomized block design. The experiment was carried out in the Brazilian Association of Biodynamic Agriculture, in Botucatu—S?o Paulo, Brazil. Treatments were: control (C), chemical fertilizer application (F), biomass of L. diversifolia alley cropping application (B), biomass of L. diversifolia alley cropping + chemical fertilizer application (B + F). In the second year of management it was observed that black oat yield was higher in treatments B + F and F with significant difference in relation to the others treatments in both systems, followed by treatment B. Between systems, only treatment B showed significant difference, with higher yield value corresponding to AFS, reflecting the efficiency of AFS to promote soil fertility. Maize production presented the second year of cultivation an increasing trend in all treatments in both production systems. This result may be due to the cumulative effect of mineralization and maize straw and oats, along the experiment. How productivity was higher in the AFS system, could also be occurring effect of biological nitrogen fixation, water retention and reduction of extreme microclimate through the rows of L. diversifolia. Comparing the AFS and TS, it was observed that the concentration of N in leaf tissue was higher in the AFS treatments, probably due to nitrogen fixation performed through the rows of L. diversifolia, that is a nitrogen fixing tree species. After two years, carbon stocked in soil show higher values in the treatments biomass + fertilizer and biomass application, in both systems, AFS and TS.