438 resultados para MAGNETOSTRATIGRAPHY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Cretaceous sediments were sampled for magnetostratigraphy at three sites. ODP Site 765 and DSDP Site 261, in the Argo Abyssal Plain, consist primarily of brownish-red to gray claystone having hematite and magnetite carriers of characteristic magnetization. ODP Site 766, in the Gascoyne Abyssal Plain, consists mainly of dark greenish-gray volcaniclastic turbidites with magnetite as the carrier of characteristic magnetization. Progressive thermal demagnetization (Sites 765 and 261) or alternating field demagnetization (Site 766) yielded well-defined polarity zones and a set of reliable paleolatitudes. Magnetic polarity chrons were assigned to polarity zones using biostratigraphic correlations. Late Aptian chron M"-1"r, a brief reversed-polarity chron younger than MOr, is a narrow, 40-cm feature delimited in Hole 765C. Early Aptian reversed-polarity chron MOr is also present in Hole 765C. Polarity chrons Mir through M3r were observed in the Barremian of all three sites. Valanginian and Hauterivian polarity chrons can be tentatively assigned to polarity zones only in Hole 766A. The paleolatitude of this region remained at 35° to 37°S from the Berriasian through the Aptian. During this interval, there was approximately 16° of clockwise rotation, with the oriented sample suites of Site 765 displaying a Berriasian declination of 307° to an Aptian declination of 323°. These results are consistent with the interpolated Early Cretaceous apparent polar wander for Australia, but indicate that this region was approximately 5? farther north than predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling at Sites 534 and 603 of the Deep Sea Drilling Project recovered thick sections of Berriasian through Aptian white limestones to dark gray marls, interbedded with claystone and clastic turbidites. Progressive thermal demagnetization removed a normal-polarity overprint carried by goethite and/or pyrrhotite. The resulting characteristic magnetization is carried predominantly by magnetite. Directions and reliability of characteristic magnetization of each sample were computed by using least squares line-fits of magnetization vectors. The corrected true mean inclinations of the sites suggest that the western North Atlantic underwent approximately 6° of steady southward motion between the Berriasian and Aptian stages. The patterns of magnetic polarity of the two sites, when plotted on stratigraphic columns of the pelagic sediments without turbidite beds, display a fairly consistent magnetostratigraphy through most of the Hauterivian-Barremian interval, using dinoflagellate and nannofossil events and facies changes in pelagic sediment as controls on the correlations. The composite magnetostratigraphy appears to include most of the features of the M-sequence block model of magnetic anomalies from Ml to Ml ON (Barremian-Hauterivian) and from M16 to M23 (Berriasian-Tithonian). The Valanginian magnetostratigraphy of the sites does not exhibit reversed polarity intervals corresponding to Ml 1 to M13 of the M-sequence model; this may be the result of poor magnetization, of a major unrecognized hiatus in the early to middle Valanginian in the western North Atlantic, or of an error in the standard block model. Based on these tentative polarity-zone correlations, the Hauterivian/Barremian boundary occurs in or near the reversed-polarity Chron M7 or M5, depending upon whether the dinoflagellate or nannofossil zonation, respectively, is used; the Valanginian/Hauterivian boundary, as defined by the dinoflagellate zonation, is near reversed-polarity Chron M10N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Campanian to middle Eocene chalks and oozes were recovered at Sites 761 and 762 of Ocean Drilling Program Leg 122 on the Exmouth Plateau, northwest Australia. Paleomagnetic analyses were made on 125 samples from Hole 761B and 367 samples from Hole 762C. Thermal cleaning, alternating field demagnetization, or mixed treatment reveals a stable remanent component of normal or reversed polarity. Correlation of the magnetic polarity sequences established for these holes with the standard magnetic polarity time scale was aided by nannofossil zonation. At Hole 761B, the sequence extends from Subchron C32-N (upper Campanian) through Subchron C17-R (middle Eocene), but given the low sedimentation rate, not all the subchrons of the standard magnetic polarity sequence were recognized. The sequence at Hole 762C extends from Subchron C13-R (middle Eocene) to the boundary between Chrons C33 and C34 (lower Campanian). The sedimentation rate is higher at Hole 762C, and all the magnetic polarity subchrons of the Campanian and Maestrichtian stages were identified. Thus, this hole could be a reference section to refine the Upper Cretaceous time scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site 1256 of Ocean Drilling Program Leg 206 to the Guatemala Basin on the eastern flank of the East Pacific Rise yielded a near-complete, middle Miocene-Quaternary carbonate-rich section that provides an opportunity to study low-latitude biostratigraphic and paleoceanographic events. The sedimentary sequence in Hole 1256B has been zoned using calcareous nannofossils according to the biostratigraphic schemes by Martini of 1971 (modified by Martini and Müller in 1986) and Okada and Bukry of 1980. The nannofossil assemblage is characteristic of the low latitudes, with abundant Gephyrocapsa, Discoaster, and Sphenolithus, and is in general moderately to well preserved, depending on nannofossil abundance and the presence of diatoms. Age estimates for the first occurrence and last occurrence of Reticulofenestra rotaria were derived from biostratigraphy and magnetostratigraphy independently and assigned to 7.18 and 6.32 Ma, respectively. Linear sedimentation rates, calculated using 28 nannofossil datums and age estimates, are high in the middle Miocene, decrease from the late Miocene to the Pliocene, then increase upsection. The abrupt drop in carbonate mass accumulation rates during the early late Miocene is referred to as the "carbonate crash." This pattern reflects (1) the long-trend decrease of productivity as the site moves away from the upwelling system at the equatorial divergence as well as (2) fluctuation in the chemistry of the bottom waters associated with production of the North Atlantic Bottom Water and ventilation via the Panama Gateway. A basement age of 14.5 Ma was obtained by extrapolating the 39.1-m/m.y. rate in the middle Miocene to the basement at 250.7 meters below seafloor, and is consistent with the ~15-Ma age of the oceanic crust estimated from marine magnetic anomalies. Reworked nannofossils and lithologic changes were used to unravel postdepositional history, and three episodes were recognized, one of which in the latest Miocene can be widely correlated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth's orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth's orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 178, eight holes were drilled at three sites (1095, 1096, and 1101) on the continental rise along the western Antarctic Peninsula. The rise sediments proved to be good paleomagnetic recorders and provided continuous magnetostratigraphic records at all three sites. Biosiliceous microfossils, particularly diatoms and radiolarians, were present in the upper Miocene through lower Pliocene sections. In the upper Pliocene to Pleistocene sections, biosiliceous microfossils were rare but calcareous nannofossils and foraminifers were present. This paper summarizes the biostratigraphy and magnetostratigraphy of Leg 178 continental rise sites and is the first attempt at direct calibration of Antarctic biostratigraphic events to the geomagnetic polarity timescale in the Pacific sector of the Southern Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A synthesis of paleomagnetic and calcareous nannofossil stratigraphies for the sedimentary sequences recovered at Deep Sea Drilling Project (DSDP) Site 577 on the Shatsky Rise is presented. Numerical ages are estimated for a series of nannofossil datum levels from the late Maestrichtian to middle Eocene period ( about 68 to about 52 m.y. ago) and the late Cenozoic (last about 5 m.y.). Absolute age control is obtained on the basis of the revised geomagnetic polarity time scale of. The results are compared with various sets of data reported in the literature, in particular to magnetobiochronologies derived from marine sections accessible on land in Italy and from recent DSDP boreholes in the South Atlantic, and with the summary by Berggren et al. Although a number of minor discrepancies remain to be resolved, the remarkable general agreement of the data validates the basic concept of this approach to the elaboration of a calibrated geologic time scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kimmeridgian-Tithonian red marly limestones and Berriasian white limestones were recovered at Site 534 of DSDP Leg 76 in the western North Atlantic. These yielded a well-defined magnetostratigraphy with the characteristic magnetization carried by hematite in red sediments and magnetite in white sediments. The polarity sequence is correlated to the magnetostratigraphy of Kimmeridgian-Tithonian-Berriasian pelagic carbonates of northern Italy and southern Spain, allowing precise biostratigraphic age correlations. The Berriasian/Tithonian boundary occurs within the upper half of Core 90, the late Tithonian/early Tithonian boundary at the base of Core 96, and the Tithonian/Kimmeridgian boundary at the top of Core 102. Correlations are also made to M-16 through M-22 of the marine magnetic anomaly M-sequence. Poor recovery and irregular magnetic properties of the underlying Kimmeridgian-Oxfordian-Callovian marls and claystones prevented determination of a polarity sequence, but the entire interval has mixed polarity. Valanginian gray marly limestones have very weak magnetizations, and preliminary results are inadequate to determine the polarity pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paleomagnetic measurement procedure at Site 503 was similar to that described for Site 502 (See preceding chapter). Each core section was measured with the longcore spinner magnetometer at 10-cm intervals. In addition, one or more discrete samples were taken from each core section for measurement of the total magnetic vector and its stability against progressive AF demagnetization. There were noteworthy differences in conditions at Site 503, however, that affected the quality and interpretation of the magnetic data and require comment. The most serious problem we encountered was the presence of rust scale from the drill string. Although the dark flecks typically were concentrated near the top of every recovered sediment core, they also smeared down a meter or more between the core liner and sediment, even when the sediment showed no indication of drilling disturbance. Individual rust scales proved to be highly magnetic - presumably because they incorporate small pieces of unoxidized metal. The anomalously high remanent intensities, several orders of magnitude above the uncontaminated sediment values, and scattered remanent directions observed in long-core magnetic measurements on many cores from Site 503 could be attributed to the presence of rust scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pebbles (>10 mm) sampled from three drill sites on the continental rise west of the Antarctic Peninsula during Ocean Drilling Program Leg 178 were classified by shape and roundness. In addition, pebble lithology and surface texture were visually identified. To increase the pebble sample number to 331, three sites that were drilled 94 to 213 km from the continental shelf edge were integrated into the data set using magnetostratigraphy for core correlation. Pebbles were compared in three groups defined by the same stratigraphic intervals at each site: 3.1-2.2 Ma (late Pliocene), 2.2-0.76 Ma (late Pliocene-late Pleistocene), and 0.76 Ma to the Holocene. Pebble lithologies originate from sources on the Antarctic Peninsula margin. Most pebbles are metamorphic and sedimentary pebbles are rare (<6%), whereas mafic volcanic and intrusive igneous lithologies increase in abundance upsection. Pebbles from 3.1 to 0.76 Ma, plotted on sphericity-roundness diagrams, indicate original transport as basal and supraglacial/englacial debris. Pebbles are abundant and of diverse lithology. From 0.76 Ma to the present, the number of pebbles is low and their shape characteristics indicate they originated as basal debris. Observed changes in ice-rafted pebbles can be explained by growth of an ice sheet and inundation of the Antarctic Peninsula topography by ice ~0.76 Ma. Prior to this, outlet and valley glaciers transported debris at high levels within and at the base of the ice. The mass accumulation rate of sand fluctuates and includes rounded quartz grains. Ice-sheet growth may have been accompanied by overall cooling from subpolar to polar glacial regimes, which halted meltwater production and enhanced the growth of ice shelves, which consequently reduced sediment supply to icebergs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven sites were drilled off the eastern shore of New Zealand during Ocean Drilling Program Leg 181 to gain knowledge of southwest Pacific ocean history, in particular, the evolution of the Pacific Deep Western Boundary Current (DWBC). Holes 1123C and 1124C penetrated lower Oligocene to middle Eocene sediments containing moderately to poorly preserved calcareous nannofossils. Nannofossil assemblages show signs of dissolution and overgrowth, but key marker species can be identified. Nannofossil abundance ranges from abundant to barren. The lower Oligocene sediments are distinctly separated from the overlying Neogene sequences by the Marshall Paraconformity, a regional marker of environmental and sea level change. An age-depth model for Hole 1123C through this sequence was constructed using nine nannofossil age datums and three magnetostratigraphic datums. There is good agreement between the biostratigraphy and magnetostratigraphy, which indicates that the Marshall Paraconformity spans ~12 m.y. in Hole 1123C. The same sequence in Hole 1124C is disrupted by at least three hiatuses, complicating interpretation of the sedimentation history. The Marshall Paraconformity spans at least 3 m.y. in Hole 1124C. A 4- m.y. gap separates lower Oligocene and middle Eocene sediments, and a ~15 m.y. hiatus separates middle Eocene mudstones from middle Paleocene nannofossil-bearing mudstones. Nannofossil biostratigraphy from Holes 1123C and 1124C indicates that the Eocene-Oligocene transition was a time of fluctuating biota and intensification of the DWBC along the New Zealand margin.