905 resultados para Lymphocyte Function-Associated Antigen-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processing of antigens for presentation by major histocompatibility complex (MHC) class I molecules requires the activity of the proteasome. The 20S proteasome complex is composed of 14 different subunits, 2 of which can be substituted by the interferon γ (IFN-γ)-inducible and MHC-encoded subunits LMP2 and LMP7 (low molecular mass poylpeptides 2 and 7). A third subunit, MECL-1, is inducible by IFN-γ but is encoded outside the MHC. Here we show by cotransfection experiments that the incorporation of MECL-1 into the 20S proteasome is directly dependent on the expression of LMP2 but independent of LMP7. Conversely, the uptake of LMP2 is strongly enhanced by MECL-1 expression. The expression of MECL-1 caused a replacement of the homologous subunit Z in the 20S proteasome complex. LMP2 is required for MECL-1 incorporation at the level of proteasome precursor formation that guarantees the concerted incorporation of two IFN-γ-inducible proteasome subunits encoded inside and outside the MHC. The obligatory coincorporation of MECL-1 and LMP2 is an important parameter for the interpretation of results obtained with LMP2-deficient cell lines and mice as well as for the design of experiments addressing the function of MECL-1 in antigen presentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defects in lymphocyte apoptosis may lead to autoimmune disorders and contribute to the pathogenesis of type 1 diabetes. Lymphocytes of nonobese diabetic (NOD) mice, an animal model of autoimmune diabetes, have been found resistant to various apoptosis signals, including the alkylating drug cyclophosphamide. Using an F2 intercross between the apoptosis-resistant NOD mouse and the apoptosis-susceptible C57BL/6 mouse, we define a major locus controlling the apoptosis-resistance phenotype and demonstrate its linkage (logarithm of odds score = 3.9) to a group of medial markers on chromosome 1. The newly defined gene cannot be dissociated from Ctla4 and Cd28 and in fact marks a 20-centimorgan region encompassing Idd5, a previously postulated diabetes susceptibility locus. Interestingly, we find that the CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) and the CD28 costimulatory molecules are defectively expressed in NOD mice, suggesting that one or both of these molecules may be involved in the control of apoptosis resistance and, in turn, in diabetes susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to naive lymphocytes, memory/effector lymphocytes can access nonlymphoid effector sites and display restricted, often tissue-selective, migration behavior. The cutaneous lymphocyte-associated antigen (CLA) defines a subset of circulating memory T cells that selectively localize in cutaneous sites mediated in part by the interaction of CLA with its vascular ligand E-selectin. Here, we report the identification and characterization of a CC chemokine, cutaneous T cell-attracting chemokine (CTACK). Both human and mouse CTACK are detected only in skin by Southern and Northern blot analyses. Specifically, CTACK message is found in the mouse epidermis and in human keratinocytes, and anti-CTACK mAbs predominantly stain the epithelium. Finally, CTACK selectively attracts CLA+ memory T cells. Taken together, these results suggest an important role for CTACK in recruitment of CLA+ T cells to cutaneous sites. CTACK is predominantly expressed in the skin and selectively attracts a tissue-specific subpopulation of memory lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wiskott–Aldrich syndrome (WAS) is an X-linked immunodeficiency caused by mutations that affect the WAS protein (WASP) and characterized by cytoskeletal abnormalities in hematopoietic cells. By using the yeast two-hybrid system we have identified a proline-rich WASP-interacting protein (WIP), which coimmunoprecipitated with WASP from lymphocytes. WIP binds to WASP at a site distinct from the Cdc42 binding site and has actin as well as profilin binding motifs. Expression of WIP in human B cells, but not of a WIP truncation mutant that lacks the actin binding motif, increased polymerized actin content and induced the appearance of actin-containing cerebriform projections on the cell surface. These results suggest that WIP plays a role in cortical actin assembly that may be important for lymphocyte function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association of the Golgi-specific adaptor protein complex 1 (AP-1) with the membrane is a prerequisite for clathrin coat assembly on the trans-Golgi network (TGN). The AP-1 adaptor is efficiently recruited from cytosol onto the TGN by myristoylated ADP-ribosylation factor 1 (ARF1) in the presence of the poorly hydrolyzable GTP analog guanosine 5′-O-(3-thiotriphosphate) (GTPγS). Substituting GTP for GTPγS, however, results in only poor AP-1 binding. Here we show that both AP-1 and clathrin can be recruited efficiently onto the TGN in the presence of GTP when cytosol is supplemented with ARF1. Optimal recruitment occurs at 4 μM ARF1 and with 1 mM GTP. The AP-1 recruited by ARF1·GTP is released from the Golgi membrane by treatment with 1 M Tris-HCl (pH 7) or upon reincubation at 37°C, whereas AP-1 recruited with GTPγS or by a constitutively active point mutant, ARF1(Q71L), remains membrane bound after either treatment. An incubation performed with added ARF1, GTP, and AlFn, used to block ARF GTPase-activating protein activity, results in membrane-associated AP-1, which is largely insensitive to Tris extraction. Thus, ARF1·GTP hydrolysis results in lower-affinity binding of AP-1 to the TGN. Using two-stage assays in which ARF1·GTP first primes the Golgi membrane at 37°C, followed by AP-1 binding on ice, we find that the high-affinity nucleating sites generated in the priming stage are rapidly lost. In addition, the AP-1 bound to primed Golgi membranes during a second-stage incubation on ice is fully sensitive to Tris extraction, indicating that the priming stage has passed the ARF1·GTP hydrolysis point. Thus, hydrolysis of ARF1·GTP at the priming sites can occur even before AP-1 binding. Our finding that purified clathrin-coated vesicles contain little ARF1 supports the concept that ARF1 functions in the coat assembly process rather than during the vesicle-uncoating step. We conclude that ARF1 is a limiting factor in the GTP-stimulated recruitment of AP-1 in vitro and that it appears to function in a stoichiometric manner to generate high-affinity AP-1 binding sites that have a relatively short half-life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological unresponsiveness established by the elimination or anergy of self-reactive lymphocyte clones is of importance to immunization against tumor-associated antigens. In this study, we have investigated induction of immunity against the human MUC1 carcinoma-associated antigen in MUC1 transgenic mice unresponsive to MUC1 antigen. Immunization of adult MUC1 transgenic mice with irradiated MUC1-positive tumor cells was unsuccessful in reversing unresponsiveness to MUC1. By contrast, fusions of dendritic cells with MUC1-positive tumor cells induced cellular and humoral immunity against MUC1. Immunization with the dendritic cell fusions that express MUC1 resulted in the rejection of established metastases and no apparent autoimmunity against normal tissues. These findings demonstrate that unresponsiveness to the MUC1 tumor-associated antigen is reversible by immunization with heterokaryons of dendritic cells and MUC1-positive carcinoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosins I, a ubiquitous monomeric class of myosins that exhibits actin-based motor properties, are associated with plasma and/or vesicular membranes and have been suggested as players for trafficking events between cell surface and intracellular membranous structures. To investigate the function of myosins 1, we have transfected a mouse hepatoma cell line (BWTG3) with cDNAs encoding the chicken brush border myosin-I (BBMI) and two variants truncated in the motor domain. One variant is deleted of the first 446 amino acids and thereby lacks the ATP binding site, whereas the other is deleted of the entire motor domain and lacks the ATP and actin binding sites. We have observed (i) that significant amounts of the truncated variants are recovered with membrane fractions after cell fractionation, (ii) that they codistribute with a compartment containing alpha2-macroglobulin internalized for 30 min as determined by fluorescent microscopy, (iii) that the production of BBMI-truncated variants impairs the distribution of the acidic compartment and ligands internalized for 30 min, and (iv) that the production of the truncated variant containing the actin binding site decreases the rate of alpha2-macroglobulin degradation whereas the production of the variant lacking the ATP binding site and the actin binding site increases the rate of a2-macroglobulin degradation. These observations indicate that the two truncated variants have a dominant negative effect on the distribution and the function of the endocytic compartments. We propose that an unidentified myosin-I might contribute to the distribution of endocytic compartments in a juxtanuclear position and/or to the regulation of the delivery of ligands to the degradative compartment in BWTG3 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential rates of AIDS development and/or T4 lymphocyte depletion in HIV-1-infected individuals remain unexplained. The hypothesis that qualitative differences in selection pressure in vivo may account for different rates of disease progression was addressed in nine eligible study participants from a cohort of 315 homosexual men who have been followed since 1985. Disproportionately fewer changes in variable regions and more in C3 of gp12O were found to be significantly associated with slower disease progression. Our finding provides the first example to demonstrate that differential selection pressure related to the emergence of HIV-1 variants is associated with long term nonprogression. Candidate vaccines that elicit strong selection pressure on C3 of gp120 are likely to provide better protection than those targeting variable regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that regulates phosphate homeostasis. Circulating FGF23 is elevated in chronic kidney disease (CKD) and independently associated with poor renal and cardiovascular outcomes and mortality. Because the study of FGF23 in individuals with normal renal function has received little attention, we examined in a large, population based study of 1128 participants the associations of FGF23 with markers of mineral metabolism and renal function. The median estimated glomerular filtration rate (eGFR) of the cohort was 105 ml/min per 1.73 m2, and the median plasma FGF23 was 78.5 RU/ml. FGF23 increased and plasma 1,25-dihydroxyvitamin D3 decreased significantly below an eGFR threshold of 102 and 99 ml/min per 1.73 m2, respectively. In contrast, plasma parathyroid hormone increased continuously with decreasing eGFR and was first significantly elevated at an eGFR of 126 ml/min per 1.73 m2. On multivariable analysis adjusting for sex, age, body mass index, and GFR, FGF23 was negatively associated with 1,25-dihydroxyvitamin D3, and urinary absolute and fractional calcium excretion but not with serum calcium or parathyroid hormone. We found a positive association of FGF23 with plasma phosphate, but no association with urinary absolute or fractional phosphate excretion and, unexpectedly, a positive association with tubular maximum phosphate reabsorption/GFR. Thus, in the absence of CKD, parathyroid hormone increases earlier than FGF23 when the eGFR decreases. The increase in FGF23 occurs at a higher eGFR threshold than previously reported and is closely associated with a decrease in 1,25-dihydroxyvitamin D3. We speculate that the main demonstrable effect of FGF23 in the setting of preserved renal function is suppression of 1,25-dihydroxyvitamin D3 rather than stimulation of renal phosphate excretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis in human cells by reversibly affecting the phosphorylation of a variety of proteins. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by reversible demethylation and active site binding. Thus far, it is known that overexpression of PME-1 in human gliomas contributes to ERK pathway signaling, cell proliferation, and malignant progression. Whether PME-1-mediated PP2A inhibition promotes therapy resistance in gliomas is unknown. Specific PP2A targets regulated by PME-1 in cancers also remain elusive. Additionally, whether oncogenic function of PME-1 can be generalized to various human cancers needs to be investigated. This study demonstrated that PME-1 expression promotes kinase inhibitor resistance in glioblastoma (GBM). PME-1 silencing sensitized GBM cells to a group of clinically used indolocarbazole multikinase inhibitors (MKIs). To facilitate the quantitative evaluation of MKIs by cancer-cell specific colony formation assay, Image-J software-plugin ‘ColonyArea’ was developed. PME-1-silencing was found to reactivate specific PP2A complexes and affect PP2A-target histone deacetylase HDAC4 activity. The HDAC4 inhibition induced synthetic lethality with MKIs similar to PME-1 depletion. However, synthetic lethality by both approaches required co-expression of a pro-apoptotic protein BAD. In gliomas, PME-1 and HDAC4 expression was associated with malignant progression. Using tumor PME-1, HDAC4 and BAD expression based stratification signatures this study defined patient subgroups that are likely to respond to MKI alone or in combination with HDAC4 inhibitor therapies. In contrast to the oncogenic role of PME-1 in certain cancer types, this study established that colorectal cancer (CRC) patients with high tumor PME-1 expression display favorable prognosis. Interestingly, PME-1 regulated survival signaling did not operate in CRC cells. Summarily, this study potentiates the candidacy of PME-1 as a therapy target in gliomas, but argues against generalization of these findings to other cancers, especially CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteasomes are complex multisubunit proteases which play a critical role in intracellular proteolysis. Immunoproteasomes, which contain three c-interferon-inducible subunits, are a subset of proteasomes which have a specialized function in antigen processing for presentation by the MHC class I pathway. Two of the c-interferon inducible subunits, LMP2 and LMP7, are encoded within the MHC class II region adjacent to the two TAP (transporter associated with antigen presentation) genes. We have investigated the localization of immunoproteasomes using monoclonal antibodies to LMP2 and LMP7. Immunoproteasomes were strongly enriched around the endoplasmic reticulum as judged by double-immuno¯uorescence experiments with anticalreticulin antibodies, but were also present in the nucleus and throughout the cytosol. In contrast, proteasome subunit C2, which is present in all proteasomes, was found to be evenly distributed throughout the cytoplasm and in the nucleus, as was the delta subunit, which is replaced by LMP2 in immunoproteasomes. c-Interferon increased the level of immunoproteasomes, but had no effect on their distribution. Our results provide the ®rst direct evidence that immunoproteasomes are strongly enriched at the endoplasmic reticulum, where they may be located close to the TAP transporter to provide efficient transport of peptides into the lumen of the endoplasmic recticulum for association with MHC class I molecules.