944 resultados para Local information
Resumo:
Within the development of motor vehicles, crash safety (e.g. occupant protection, pedestrian protection, low speed damageability), is one of the most important attributes. In order to be able to fulfill the increased requirements in the framework of shorter cycle times and rising pressure to reduce costs, car manufacturers keep intensifying the use of virtual development tools such as those in the domain of Computer Aided Engineering (CAE). For crash simulations, the explicit finite element method (FEM) is applied. The accuracy of the simulation process is highly dependent on the accuracy of the simulation model, including the midplane mesh. One of the roughest approximations typically made is the actual part thickness which, in reality, can vary locally. However, almost always a constant thickness value is defined throughout the entire part due to complexity reasons. On the other hand, for precise fracture analysis within FEM, the correct thickness consideration is one key enabler. Thus, availability of per element thickness information, which does not exist explicitly in the FEM model, can significantly contribute to an improved crash simulation quality, especially regarding fracture prediction. Even though the thickness is not explicitly available from the FEM model, it can be inferred from the original CAD geometric model through geometric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new, integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
Resumo:
We estimate and compare the performance of Portuguese-based mutual funds that invest in the domestic market and in the European market using unconditional and conditional models of performance evaluation. Besides applying both partial and full conditional models, we use European information variables, instead of the most common local ones, and consider stochastically detrended conditional variables in order to avoid spurious regressions. The results suggest that mutual fund managers are not able to outperform the market, presenting negative or neutral performance. The incorporation of conditioning information in performance evaluation models is supported by our findings, as it improves the explanatory power of the models and there is evidence of both time-varying betas and alphas related to the public information variables. It is also shown that the number of lags to be used in the stochastic detrending procedure is a critical choice, as it will impact the significance of the conditioning information. In addition, we observe a distance effect, since managers who invest locally seem to outperform those who invest in the European market. However, after controlling for public information, this effect is slightly reduced. Furthermore, the results suggest that survivorship bias has a small impact on performance estimates.
Resumo:
This paper explores the main determinants of the use of the cost accounting system (CAS) in Portuguese local government (PLG). Regression analysis is used to study the fit of a model of accounting changes in PLG, focused on cost accounting systems oriented to activities and outputs. Based on survey data gathered from PLG, we have found that the use of information in decision-making and external reporting is still a mirage. We obtain evidence about the influence of the internal organizational context (especially the lack of support and difficulties in the CAS implementation) in the use for internal purposes, while the institutional environment (like external pressures to implement the CAS) appears to be more deterministic of the external use. Results strengthen the function of external reporting to legitimate the organization’s activities to external stakeholders. On the other hand, some control variables (like political competition, usefulness and experience) also evidence some explanatory power in the model. Some mixed results were found that appeal to further research in the future. Our empirical results contribute to understand the importance of interconnecting the contingency and institutional approaches to gain a clear picture of cost accounting changes in the public sector.
Resumo:
Software and information services (SIS) have become a field of increasing opportunities for international trade due to the worldwide diffusion of a combination of technological and organizational innovations. In several regions, the software industry is organized in clusters, usually referred to as "knowledge cities" because of the growing importance of knowledge-intensive services in their economy. This paper has two primary objectives. First, it raises three major questions related to the attractiveness of different cities in Argentina and Brazil for hosting software companies and to their impact on local development. Second, a new taxonomy is proposed for grouping clusters according to their dominant business segment, ownership pattern and scope of operations. The purpose of this taxonomy is to encourage further studies and provide an exploratory analytical tool for analyzing software clusters.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. To assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image to those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, we compare several candidate combiners with respect to their performance in the visual localization task. A deeper insight into the potential of the sum and product combiners is provided by testing two extensions of these algebraic rules: threshold and weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance. The voting method, whilst competitive to the algebraic rules in their standard form, is shown to be outperformed by both their modified versions.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico
Resumo:
Dissertação de mestrado em Gestão Pública, apresentada à secção autónoma de Ciências Sociais, Jurídicas e Políticas da Universidade de Aveiro,sob orientação da Prof. Doutora Maria Luís Rocha Pinto.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Nowadays there is a big percentage of the population, specially young users, which are smartphone users and there is a lot of information to be provided within the applications, information provision should be done carefully and should be accurate, otherwise an overload of information will be produced, and the user will discard the app which is providing the information. Mobile devices are becoming smarter and provide many ways to filter information. However, there are alternatives to improve information provision from the side of the application. Some examples are, taking into account the local time, considering the battery level before doing an action and checking the user location to send personalized information attached to that location. SmartCampus and SmartCities are becoming a reality and they have more and more data integrated every day. With all this amount of data it is crucial to decide when and where is the user going to receive a notification with new information. Geofencing is a technique which allows applications to deliver information in a more useful way, in the right time and in the right place. It consists of geofences, physical regions delimited by boundaries, and devices that are eligible to receive the information assigned to the geofence. When devices cross one of these geofences an alert is pushed to the mobile device with the information.