918 resultados para Load flour calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new method for the calculation of the fractional expressions in the presence of sensor redundancy and noise, is presented. An algorithm, taking advantage of the signal characteristics and the sensor redundancy, is tuned and optimized through genetic algorithms. The results demonstrate the good performance for different types of expressions and distinct levels of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fiber reinforced plastics has increased in the last decades due to their unique properties. Advantages of their use are related with low weight, high strength and stiffness. Drilling of composite plates can be carried out in conventional machinery with some adaptations. However, the presence of typical defects like delamination can affect mechanical properties of produced parts. In this paper delamination influence in bearing stress of drilled hybrid carbon+glass/epoxy quasi-isotropic plates is studied by using image processing and analysis techniques. Results from bearing test show that damage minimization is an important mean to improve mechanical properties of the joint area of the plate. The appropriateness of the image processing and analysis techniques used in the measurement of the damaged area is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação centra-se no estudo de fadiga de uma ponte ferroviária com tabuleiro misto vigado pertencente a uma via de transporte de mercadorias. O caso de estudo incide sobre a ponte ferroviária sobre o rio do Sonho, localizada na Estrada de Ferro de Carajás situada no nordeste do Brasil. Nesta linha circulam alguns dos maiores comboios de mercadoria do mundo com cerca de 3.7 km de extensão e com cargas por eixo superiores a 300 kN. Numa primeira fase apresentam-se diversas metodologias de análise da fadiga em pontes ferroviárias metálicas. É também descrita a ferramenta computacional FADBridge, desenvolvida em ambiente MATLAB, e que possibilita o cálculo sistematizado e eficiente do dano de fadiga em detalhes construtivos de acordo com as indicações dos eurocódigos. Em seguida são abordadas as metodologias numéricas utilizadas para a realização das análises dinâmicas do sistema ponte-comboio e os aspetos regulamentares a ter em consideração no dimensionamento de pontes ferroviárias. O modelo numérico de elementos finitos da ponte foi realizado com recurso ao programa ANSYS. Com base neste modelo foram obtidos os parâmetros modais, nomeadamente as frequências naturais e os modos de vibração, tendo sido também analisada a importância do efeito compósito via-tabuleiro e a influência do comportamento não linear do balastro. O estudo do comportamento dinâmico da ponte foi realizado por intermédio de uma metodologia de cargas móveis através da ferramenta computacional Train-Bridge Interaction (TBI). As análises dinâmicas foram efetuadas para a passagem dos comboios reais de mercadorias e de passageiros e para os comboios de fadiga regulamentares. Nestas análises foi estudada a influência dos modos de vibração globais e locais, das configurações de carga dos comboios e do aumento da velocidade de circulação, na resposta dinâmica da ponte. Por último, foi avaliado o comportamento à fadiga de diversos detalhes construtivos para os cenários de tráfego regulamentar e reais. Foi ainda analisada a influência do aumento da velocidade, da configuração de cargas dos comboios e da degradação da estrutura nos valores do dano por fadiga e da respetiva vida residual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sustentabilidade energética do planeta é uma preocupação corrente e, neste sentido, a eficiência energética afigura-se como sendo essencial para a redução do consumo em todos os setores de atividade. No que diz respeito ao setor residencial, o indevido comportamento dos utilizadores aliado ao desconhecimento do consumo dos diversos aparelhos, são factores impeditivos para a redução do consumo energético. Uma ferramenta importante, neste sentido, é a monitorização de consumos nomeadamente a monitorização não intrusiva, que apresenta vantagens económicas relativamente à monitorização intrusiva, embora levante alguns desafios na desagregação de cargas. Abordou-se então, neste documento, a temática da monitorização não intrusiva onde se desenvolveu uma ferramenta de desagregação de cargas residenciais, sobretudo de aparelhos que apresentavam elevados consumos. Para isso, monitorizaram-se os consumos agregados de energia elétrica, água e gás de seis habitações do município de Vila Nova de Gaia. Através da incorporação dos vetores de água e gás, a acrescentar ao da energia elétrica, provou-se que a performance do algoritmo de desagregação de aparelhos poderá aumentar, no caso de aparelhos que utilizem simultaneamente energia elétrica e água ou energia elétrica e gás. A eficiência energética é também parte constituinte deste trabalho e, para tal, implementaram-se medidas de eficiência energética para uma das habitações em estudo, de forma a concluir as que exibiam maior potencial de poupança, assim como rápidos períodos de retorno de investimento. De um modo geral, os objetivos propostos foram alcançados e espera-se que num futuro próximo, a monitorização de consumos não intrusiva se apresente como uma solução de referência no que respeita à sustentabilidade energética do setor residencial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data suggest that the clinical course of reactional states in leprosy is closely related to the cytokine profile released locally or systemically by the patients. In the present study, patients with erythema nodosum leprosum (ENL) were grouped according to the intensity of their clinical symptoms. Clinical and immunological aspects of ENL and the impact of these parameters on bacterial load were assessed in conjunction with patients' in vitro immune response to mycobacterial antigens. In 10 out of the 17 patients tested, BI (bacterial index) was reduced by at least 1 log from leprosy diagnosis to the onset of their first reactional episode (ENL), as compared to an expected 0.3 log reduction in the unreactional group for the same MDT (multidrug therapy) period. However, no difference in the rate of BI reduction was noted at the end of MDT among ENL and unreactional lepromatous patients. Accordingly, although TNF-alpha (tumor necrosis factor) levels were enhanced in the sera of 70.6% of the ENL patients tested, no relationship was noted between circulating TNF-alpha levels and the decrease in BI detected at the onset of the reactional episode. Evaluation of bacterial viability of M. leprae isolated from the reactional lesions showed no growth in the mouse footpads. Only 20% of the patients demonstrated specific immune response to M. leprae during ENL. Moreover, high levels of soluble IL-2R (interleukin-2 receptor) were present in 78% of the patients. Circulating anti-neural (anti-ceramide and anti-galactocerebroside antibodies) and anti-mycobacterial antibodies were detected in ENL patients' sera as well, which were not related to the clinical course of disease. Our data suggest that bacterial killing is enhanced during reactions. Emergence of specific immune response to M. leprae and the effective role of TNF-alpha in mediating fragmentation of bacteria still need to be clarified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response has gained increasing importance in the context of competitive electricity markets and smart grid environments. In addition to the importance that has been given to the development of business models for integrating demand response, several methods have been developed to evaluate the consumers’ performance after the participation in a demand response event. The present paper uses those performance evaluation methods, namely customer baseline load calculation methods, to determine the expected consumption in each period of the consumer historic data. In the cases in which there is a certain difference between the actual consumption and the estimated consumption, the consumer is identified as a potential cause of non-technical losses. A case study demonstrates the application of the proposed method to real consumption data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.