995 resultados para Liquid metals.
Resumo:
The uncontrolled disposal of solid wastes poses an immediate threat to public health and a long term threat to the environmental well being of future generations. Solid waste is waste resulting from human activities that is solid and unwanted (Peavy et al., 1985). If unmanaged, dumped solid wastes generate liquid and gaseous emissions that are detrimental to the environment. This can lead to a serious form of contamination known as metal contamination, which poses a risk to human health and ecosystems. For example, some heavy metals (cadmium, chromium compounds, and nickel tetracarbonyl) are known to be highly toxic, and are aggressive at elevated concentrations. Iron, copper, and manganese can cause staining, and aluminium causes depositions and discolorations. In addition, calcium and magnesium cause hardness in water causing scale deposition and scum formation. Though not a metal but a metalloid, arsenic is poisonous at relatively high concentrations and when diluted at low concentrations causes skin cancer. Normally, metal contaminants are found in a dissolved form in the liquid percolating through landfills. Because average metal concentrations from full-scale landfills, test cells, and laboratory studies have tended to be generally low, metal contamination originating from landfills is not generally considered a major concern (Kjeldsen et al., 2002; Christensen et al., 1999). However, a number of factors make it necessary to take a closer look at metal contaminants from landfills. One of these factors relates to variability. Landfill leachate can have different qualities depending on the weather and operating conditions. Therefore, at one moment in time, metal contaminant concentrations may be quite low, but at a later time these concentrations could be quite high. Also, these conditions relate to the amount of leachate that is being generated. Another factor is biodiversity. It cannot be assumed that a particular metal contaminant is harmless to flora and fauna (including micro organisms) just because it is harmless to human health. This has significant implications for ecosystems and the environment. Finally, there is the moral factor. Because uncertainty surrounds the potential effects of metal contamination, it is appropriate to take precautions to prevent it from taking place. Consequently, it is necessary to have good scientific knowledge (empirically supported) to adequately understand the extent of the problem and improve the way waste is being disposed of
Resumo:
We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
This thesis investigates the coefficient of performance (COP) of a hybrid liquid desiccant solar cooling system. This hybrid cooling system includes three sections: 1) conventional air-conditioning section; 2) liquid desiccant dehumidification section and 3) air mixture section. The air handling unit (AHU) with mixture variable air volume design is included in the hybrid cooling system to control humidity. In the combined system, the air is first dehumidified in the dehumidifier and then mixed with ambient air by AHU before entering the evaporator. Experiments using lithium chloride as the liquid desiccant have been carried out for the performance evaluation of the dehumidifier and regenerator. Based on the air mixture (AHU) design, the electrical coefficient of performance (ECOP), thermal coefficient of performance (TCOP) and whole system coefficient of performance (COPsys) models used in the hybrid liquid desiccant solar cooing system were developed to evaluate this system performance. These mathematical models can be used to describe the coefficient of performance trend under different ambient conditions, while also providing a convenient comparison with conventional air conditioning systems. These models provide good explanations about the relationship between the performance predictions of models and ambient air parameters. The simulation results have revealed the coefficient of performance in hybrid liquid desiccant solar cooling systems substantially depends on ambient air and dehumidifier parameters. Also, the liquid desiccant experiments prove that the latent component of the total cooling load requirements can be easily fulfilled by using the liquid desiccant dehumidifier. While cooling requirements can be met, the liquid desiccant system is however still subject to the hysteresis problems.
Resumo:
This study investigated, validated, and applied the optimum conditions for a modified microwave assisted digestion method for subsequent ICP-MS determination of mercury, cadmium, and lead in two matrices relevant to water quality, that is, sediment and fish. Three different combinations of power, pressure, and time conditions for microwave-assisted digestion were tested, using two certified reference materials representing the two matrices, to determine the optimum set of conditions. Validation of the optimized method indicated better recovery of the studied metals compared to standard methods. The validated method was applied to sediment and fish samples collected from Agusan River and one of its tributaries, located in Eastern Mindanao, Philippines. The metal concentrations in sediment ranged from 2.85 to 341.06 mg/kg for Hg, 0.05 to 44.46 mg/kg for Cd and 2.20 to 1256.16 mg/kg for Pb. The results indicate that the concentrations of these metals in the sediments rapidly decrease with distance downstream from sites of contamination. In the selected fish species, the metals were detected but at levels that are considered safe for human consumption, with concentrations of 2.14 to 6.82 μg/kg for Hg, 0.035 to 0.068 μg/kg for Cd, and 0.019 to 0.529 μg/kg for Pb.
Resumo:
We have used a scanning tunneling microscope to manipulate heteroleptic phthalocyaninato, naphthalocyaninato, porphyrinato double-decker molecules at the liquid/solid interface between 1-phenyloctane solvent and graphite. We employed nano-grafting of phthalocyanines with eight octyl chains to place these molecules into a matrix of heteroleptic double-decker molecules; the overlayer structure is epitaxial on graphite. We have also used nano-grafting to place double-decker molecules in matrices of single-layer phthalocyanines with octyl chains. Rectangular scans with a scanning tunneling microscope at low bias voltage resulted in the removal of the adsorbed doubledecker molecular layer and substituted the double-decker molecules with bilayer-stacked phthalocyanines from phenyloctane solution. Single heteroleptic double-decker molecules with lutetium sandwiched between naphthalocyanine and octaethylporphyrin were decomposed with voltage pulses from the probe tip; the top octaethylporphyrin ligand was removed and the bottom naphthalocyanine ligand remained on the surface. A domain of decomposed molecules was formed within the double-decker molecular domain, and the boundary of the decomposed molecular domain self-cured to become rectangular. We demonstrated a molecular “sliding block puzzle” with cascades of double-decker molecules on the graphite surface.
Resumo:
Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experiment investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that the 1 - 74 um particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for he potential dissolved particulate fraction in heavy metals build-up. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.