892 resultados para Lipid nanocapsules
Resumo:
Octopus vulgaris, Octopus maya, and Eledone cirrhosa from distinct marine environments [Northeast Atlantic (NEA), Northwest Atlantic (NWA), Eastern Central Atlantic, Western Central Atlantic (WCA), Pacific Ocean, and Mediterranean Sea] were characterized regarding their lipid and vitamin E composition. These species are those commercially more relevant worldwide. Significant interspecies and interorigin differences were observed. Unsaturated fatty acids account for more than 65% of total fatty acids, mostly ω-3 PUFA due to docosahexaenoic (18.4−29.3%) and eicosapentanoic acid (11.4− 23.9%) contributions. The highest ω-3 PUFA amounts and ω-3/ω-6 ratios were quantified in the heaviest specimens, O. vulgaris from NWA, with high market price, and simultaneously in the lowest graded samples, E. cirrhosa from NEA, of reduced dimensions. Although having the highest cholesterol contents, E. cirrhosa from NEA and O. maya from WCA have also higher protective fatty acid indexes. Chemometric discrimination allowed clustering the selected species and several origins based on lipid and vitamin E profiles.
Resumo:
Introduction: Coronary artery disease and aging seems to be associated with a sedentary lifestyle, contributing to increased abdominal fat and consequently metabolic complications. The exercise can break this cycle by stimulating lipolysis and the use of fatty acids. In Europe there is still a lack of cardiac rehabilitation programmes in hospitals, therefore, this study aims to demonstrate the advantages of implementing home-based exercise programmes, as well as, their effects on cardiovascular prevention. This study analyzed the effects of a home-based exercise programme, in patients with coronary artery disease (myocardial infarction for 1 year), in body composition, abdominal fat, lipid profile. Methods: An ongoing randomized controlled trial with a sample of 20 participants were randomly allocated to intervention (n = 10) and control groups (n = 10). Intervention group performed a specific exercise programme during 8 weeks, consisting of ten home based exercises taking into account flexibility, muscle endurance and strength as well as cardiovascular endurance. Skinfolds thickness were measure to calculate the percentage of total fat: Skinfolds used were suprailiac, abdominal horizontal and vertical. Body mass index calculation and blood tests for lipidic profile were performed. Results: After eight weeks the intervention group decreased significantly the percentage of total fat (p < 0.05), the suprailiac skinfold (p < 0.05), the abdominal horizontal and vertical skinfold (p < 0.05) when compared with control group. In the intervention group it was observed after 8 weeks a significant decrease in body mass index, LDL-cholesterol and triglycerides. Conclusions: Home-based exercise programme influenced body composition, abdominal fat and lipid profile. These results highlight the importance of implementing home based exercises that are easy and cheap to implement in cardiac patients, in order to promote health and reduce cardiovascular risk factors.
Resumo:
Leprosy, a chronic infectious disease, is caused by a Mycobacterium leprae infection. After India, Brazil has the second greatest number of cases in the world. Increase of oxidative stress and antioxidant deficiency are present in infected subjects and can be related to infection progression. We studied alterations in serum levels of lipid peroxidation (LPO) and vitamin A in patients with different forms of leprosy. Four groups of leprosy patients and a control group (healthy subjects) were selected, and their vitamin A serum levels and LPO profile, measured as malonaldehyde (MDA) were measured by spectrophotometric assays. The mean MDA serum levels (µmol/L) were 3.80 ± 0.5 for control group and 10.54 ± 1.1 in the leprosy patients and this increase was gradual, being more accentuated in severe forms of the disease. Also, the vitamin A serum levels (µg/dL) were diminished in the infected subjects (38.51 ± 4.2), mainly in lepromatous form, when compared with the control group (53.8 ± 5.6). These results indicate that LPO can be an important factor in Mycobacterium leprae infection, which can be related to increases in phagocytic activity and the general breakdown of antioxidants, contributing to an increase of LPO during infection progression. The evaluation of oxidant/antioxidant status in these patients can be an important factor in the treatment, control, and/or prognosis of this disease.
Resumo:
HIV+ patients often develop alterations of the plasma lipids that may implicate in development of premature coronary artery disease. High-density lipoprotein (HDL) has an important role in preventing atherogenesis and the aim of this study was to investigate aspects of HDL function in HIV+ patients. HIV+ patients (n = 48) and healthy control subjects (n = 45) of both sexes with similar age were studied. Twenty-five were not being treated with antiretroviral agents, 13 were under reverse transcriptase inhibitor nucleosidic and non-nucleosidic (NRTI+NNRTI) and 10 were under NRTI + protease inhibitors (NRTI+PI) treatment. Paraoxonase 1 (PON1) activity and the transfer of free and esterified cholesterol, tryglicerides and phospholipids from a lipidic nanoemulsion to HDL were analyzed. In comparison with healthy controls, HIV+ patients presented low PON-1 activity and diminished transfer of free cholesterol and tryglicerides. In contrast, phospholipid transfer was increased in those patients, whereas the transfer of cholesteryl esters was unchanged. NRTI+NNRTI increases the transfer of cholesteryl esters and triglycerides but in NRTI+PI there was no difference in respect to non-treated HIV+ patients. HDL from HIV+ patients has smaller antioxidant properties, as shown by lower PON-1 activity, and the transfer of lipids to this lipoprotein fraction is also altered, suggesting that HDL function is defective in those patients.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
INTRODUCTION: HIV-infected children and adolescents treated with highly active antiretroviral therapy (HAART) regimens that include a protease inhibitor (PI) can show significant improvements in clinical outcomes, nutritional status and quality of life. The study aimed to report nutritional and metabolic alterations for pediatric patients continuously exposed to HAART and for healthy controls for up to 1 year. METHODS: Clinical, anthropometric, lipid profile and food intake data were collected prospectively over approximately 12-months for each patient. RESULTS: Fifty-one individuals were studied, of these, 16 were healthy. After 12 months follow-up, HIV-positive individuals remained below the healthy control group parameters. No change was observed concerning food intake. Triglyceride serum levels were higher in patients using protease inhibitor at the onset of the study [PI groups: 114 (43 - 336), and 136 (63 - 271) versus control group: 54.5 (20 - 162); p = 0.003], but after twelve months follow-up, only the group using protease inhibitor for up to two months presented higher values [140 (73 - 273) versus 67.5 (33 - 117); p = 0.004]. HDL-cholesterol was lower in HIV-positive individuals [HIV-positive groups: 36 (27 - 58) and 36 (23 - 43); control 49.5 (34 - 69); p = 0.004]. CONCLUSIONS: HIV-infected children and adolescents treated with highly active antiretroviral therapy showed compromised nutritional parameters compared to a paired healthy control group. Individuals using protease inhibitor presented worse triglyceride serum levels compared to their healthy counterparts.
Resumo:
Introduction Although the initiation of highly active antiretroviral therapy (HAART) is accompanied by an attenuation of viral load, metabolic disorders characterized by hyperglycemia, dyslipidemia, and lipodystrophy are often observed in patients under this treatment. Certain foods, such as oat bran, soy protein, and flaxseed, have been shown to improve a patient's lipid profile despite possible increases in uricemia. Thus, a bioactive compound was formulated using these foods to help patients with HIV/AIDS control metabolic disorders resulting from HAART. Methods An uncontrolled before and after study was performed. The total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and uric acid before and after 3 months of consuming the formulation were compared in patients. The compound was formulated such that 40g (the recommended daily intake) contained approximately 10g of flaxseed, 20g of oat bran, and 10g of textured soy protein. Results The study population consisted of 139 patients, 31 of whom were included in the final analysis. There were no significant variations between the laboratory results obtained before and after consumption of the compound. Conclusions The regular consumption of the formulation together with individualized dietary guidance did not reduce lipid levels and did not contribute to an increase in uricemia in the study group. However, new studies with higher doses of the foods that compose the formulation should be encouraged to investigate whether these foods can positively influence the lipid profiles of these patients.
Resumo:
Abstract INTRODUCTION : The human T-lymphotropic virus-1 (HTLV-1) is associated with chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic inflammatory disease. Disturbances in lipid metabolism are involved in inflammatory and demyelinating diseases. METHODS : Plasma levels of triglycerides, total cholesterol, and fractions of HTLV-1-infected individuals of both sexes with different clinical progressions were determined. RESULTS : Elevated levels of triglyceride and very low-density lipoproteins (VLDL) were exclusively detected in HTLV-1-infected women from asymptomatic and HAM/TSP groups compared with uninfected individuals (p = 0.02). CONCLUSIONS : Elevated triglyceride and VLDL levels in HTLV-1-infected women may be related to the predominance of HAM/TSP in women.
Resumo:
RESUMO: Na sociedade contemporânea a diabetes tipo 2 e a obesidade estão a aumentar exponencialmente, representando um grave problema de saúde pública. De acordo com a IDF “A diabetes e a obesidade são o principal problema de saúde pública do século XXI’. Para além destas duas patologias, a prevalência de esteatose hepática não-alcoólica (NAFLD), entre a população obesa e diabética, é de cerca de 90%. O aumento da obesidade, diabetes e NAFLD tem uma forte correlação com o aumento do consumo de gorduras e açúcares, acompanhado de um decréscimo acentuado da actividade física. A obesidade, diabetes e NAFLD tem sido escrupolosamente investigada mas as terapêuticas disponíveis continuam a ser muito limitadas. Tendo em conta o número crescente e alarmante de obesos e diabéticos o conhecimento detalhado da patofisiologia da obesidade, diabetes e NAFLD, tendo em vista a necessidade extrema de desenvolvimento de novas estratégias terapêuticas, é da mais elevada urgência. O fígado é reconhecido como um orgão primordial no controlo da homeostase. No estado pós-prandial, o fígado converte a glucose em glicogénio e lípidos. Em contraste, no estado de jejum, o fígado promove a produção de glucose. Sistemas neuronais e hormonais, bem como o estado metabólico do fígado, controlam de forma muito precisa a alternância entre os diferentes substratos metabólicos, dependente do estado prandial. A insulina tem um papel central no controlo do metabolismo energético no fígado; se, por um lado, inibe a produção hepática de glucose e corpos cetónicos, por outro, promove a glicólise e a lipogénese. O metabolismo energético no fígado é também regulado por vários factores de transcrição e co-reguladores que, por sua vez, são regulados pela insulina, glucagina e outras hormonas metabólicas. Em conjunto, todos estes factores e reguladores vão controlar de forma muito estreita a gluconeogénese, a β-oxidação e a lipogénese, no fígado. Para além dos já conhecidos reguladores do metabolismo hepático, novas moléculas têm sido estudadas como tendo um papel fundamental na regulação do metabolismo energético no fígado. Qualquer desequilíbrio no metabolismo hepático vai contribuir para a insulino-resistência, NAFLD e diabetes tipo 2. O principal objectivo do trabalho de investigação aqui apresentado é o contributo para o estudo detalhado da patogénese da diabetes e obesidade, num contexto de dietas ricas em açúcares e gorduras, e com a perspectiva de explorar novas estratégias terapêuticas. Os objectivos específicos deste trabalho eram: primeiro, determinar se o tratamento com glutationo (GSH) e óxido nítrico (NO) era suficiente para melhorar a insulino-resistência associada ao elevado consumo de sacarose; segundo, determinar o papel da Rho-kinase 1 (ROCK1) na regulação do metabolismo hepático da glucose e dos lípidos; e terceiro, estudar o efeito do metilsulfonilmetano (MSM) em doenças metabólicas associadas à obesidade. Na primeira parte deste trabalho de investigação foram utilizados ratos Wistar machos sujeitos a uma dieta rica em sacarose (HS). Tal como esperado, estes animais apresentavam insulino-resistência e hiperinsulinémia. A dieta HS levou ao aumento dos níveis hepáticos de NO e ao decréscimo dos níveis de GSH no fígado. Em jejum, a administração intraportal de GSH e NO, a animais saudáveis promoveu um aumento significativo da sensibilidade à insulina. Também nestes animais, a administração intravenosa de S-nitrosotióis, compostos orgânicos que contém um grupo nitroso acoplado a um átomo de enxofre de um tiol, promoveu o aumento significativo da sensibilidade à insulina. Pelo contrário, em animais sujeitos à dieta HS, as doses padrão de GSH + NO e de S-nitrosotióis não conseguiram promover o aumento da sensibilidade à insulina. No entanto, ao aumentar a dose de S-nitrosotióis administrados por via intravenosa, foi possível observar o aumento da sensibilidade à insulina dependente da dose, indicando um possível papel dos S-nitrosotióis como sensibilizadores de insulina. O estudo detalhado do papel dos S-nitrosotióis na via de sinalização da insulina revelou que há um aumento da fosforilação do receptor da insulina (IR) e da proteína cinase B (Akt), sugerindo um efeito dos S-nitrosotióis nesta via de sinalização. Os resultados apresentados nesta primeira parte sugerem que os S-nitrosotióis promovem a correcta acção da insulina, podendo vir a ser importantes alvos terapêuticos. Na segunda parte deste trabalho de investigação utilizámos murganhos, com uma delecção específica da ROCK1 no fígado, e sujeitos a uma dieta rica em lípidos (HFD). Foi possível concluir que a ausência da ROCK1 no fígado previne a obesidade, melhora a sensibilidade à insulina e protege contra a esteatose hepática. A ausência de ROCK1 no fígado levou a um decréscimo significativo da expressão génica de genes associados à lipogénese, com uma diminuição acentuada do fluxo metabólico associado a esta via. Pelo contrário, a sobreexpressão de ROCK1, exclusivamente no fígado, promove a insulino-resistência e a esteatose hepática no contexto de obesidade induzida pela dieta. Para além disto, a delecção da ROCK1 no fígado de animais obesos e diabéticos, os murganhos deficientes em leptina, corroborou os dados obtidos no primeiro modelo animal, com a franca melhoria da hiperglicémia, hiperinsulinémia e esteatose hepática. Os dados que compõem esta parte do trabalho de investigação sugerem que a ROCK1 tem um papel crucial na regulação do metabolismo lipídico. Na terceira e última parte deste trabalho de investigação foi investigado o efeito do composto metilsulfunilmetano (MSM), um composto organosulfúrico naturalmente presente em plantas e utilizado também como suplemento dietético, em murganhos obesos e insulino-resistentes, por exposição a uma dieta rica em lípidos (DIO). O tratamento com MSM melhorou a insulino-resistência e protegeu contra a esteatose hepática. O conteúdo hepático em triglicéridos e colesterol também diminuíu de forma significativa nos animais DIO sujeitos ao tratamento com MSM, bem como a expressão génica associada à lipogénese. Para além disto, o tratamento com MSM levou a uma diminuição da expressão génica associada à inflamação. De realçar que o tratamento com MSM levou a uma melhoria do perfil hematopoiético destes animais, tanto na medula óssea como no sangue. Para comprovar o efeito benéfico do MSM na obesidade e insulino-resistência utilizámos murganhos deficientes no receptor da leptina, e por isso obesos e diabéticos, tendo observado um perfil semelhante ao obtido para murganhos sujeitos a uma dieta rica em lípidos e tratados com MSM. Concluímos, através dos dados recolhidos, que o MSM como suplemento pode ter efeitos benéficos na hiperinsulinémia, insulino-resistência e inflamação que caracterizam a diabetes tipo 2. Em resumo, os dados obtidos neste trabalho de investigação mostram que os S-nitrosotióis podem ter um papel importante como sensibilizadores da insulina, promovendo um aumento da sensibilidade à insulina num contexto de dietas ricas em sacarose. Para além disto, estudos in vitro, sugerem que os S-nitrosotióis regulam, especificamente, a via de sinalização da insulina. Este trabalho teve também como objectivo o estudo da ROCK1 como regulador do metabolismo da glucose e dos lípidos no fígado. Através do estudo de animais com uma delecção ou uma sobreexpressão da ROCK1 no fígado mostrou-se que esta tem um papel crucial na patogénese da obesidade e diabetes tipo 2, especificamente através do controlo da lipogénese de novo. Finalmente, foi também objectivo deste trabalho, explorar o efeito do MSM em animais DIO e deficientes em leptina. O tratamento com MSM protege de forma evidente contra a obesidade e insulino-resistência, com especial enfâse para a capacidade que esta molécula demonstrou ter na protecção contra a inflamação. Em conjunto os vários estudos aqui apresentados mostram que tanto os S-nitrosotióis como a ROCK1 têm um papel na patogénese da obesidade e diabetes tipo 2 e que a utilização de MSM como suplemento às terapêuticas convencionais pode ter um papel no tratamentos de doenças metabólicas.-------------------------------ABSTRACT: In modern western societies type 2 diabetes and obesity are increasing exponentially, representing a somber public concern. According to the International Diabetes Federation (IDF) ‘Diabetes and Obesity are the biggest public health challenges of the 21st century’. Aside from these the prevalence of nonalcoholic fatty liver disease (NAFLD), among the diabetic and obese population, is as high as 90%. It is now well established that the increase in obesity, diabetes and NAFLD strongly correlates with an increase in fat and sugar intake in our diet, alongside physical inactivity. The pathogenesis of obesity, diabetes and NAFLD has been thoroughly studied but the treatment options available are still narrow. Considering the alarming number in the obese and diabetic population the complete understanding of the pathogenesis, keeping in mind that new therapeutic strategies need to be attained, is of the highest urgency. The liver has been well established as a fundamental organ in regulating whole-body homeostasis. In the fed state the liver converts the glucose into glycogen and lipids. Conversely, in the fasted state, glucose will be produced in the liver. Neuronal and hormonal systems, as well as the hepatic metabolic states, tightly control the fast to fed switch in metabolic fuels. Insulin has a central role in controlling hepatic energy metabolism, by suppressing glucose production and ketogenesis, while stimulating glycolysis and lipogenesis. Liver energy metabolism is also regulated by various transcription factors and coregulators that are, in turn, regulated by insulin, glucagon and other metabolic hormones. Together, these regulators will act to control gluconeogenesis, β-oxidation and lipogenesis in the liver. Aside from the well-established regulators of liver energy metabolism new molecules are being studied has having a role in regulating hepatic metabolism. Any imbalance in the liver energy metabolism is a major contributor to insulin resistance, NAFLD and type 2 diabetes. The overall goal of this research work was to contribute to the understanding of the pathogenesis of diabetes and obesity, on a setting of high-sucrose and high-fat diets, and to explore potential therapeutic options. The specific aims were: first, to determine if treatment with glutathione (GSH) and nitric oxide (NO) was sufficient to ameliorate insulin resistance induced by high-sucrose feeding; second, to determine the physiological role of rho-kinase 1 (ROCK1) in regulating hepatic and lipid metabolism; and third, to study the effect of methylsulfonylmethane (MSM) on obesity-linked metabolic disorders. In the first part of this research work we used male Wistar rats fed a high-sucrose (HS) diet. As expected, rats fed a HS diet were insulin resistant and hyperinsulinemic. HS feeding increased hepatic levels of NO, while decreasing GSH. In fasted healthy animals administration of both GSH and NO, to the liver, was able to increase insulin sensitivity. Intravenous administration of S-nitrosothiols, organic compounds containing a nitroso group attached to the sulfur atom of a thiol, in fasted control animals also increased insulin sensitivity. Under HS feeding the standard doses of GSH + NO and S-nitrosothiols were unable to promote an increase in insulin sensitivity. However, the intravenous administration of increasing concentrations of S-nitrosothiols was able to restore insulin sensitivity, suggesting that S-nitrosothiols have an insulin sensitizing effect. Investigation of the effect of S-nitrosothiols on the insulin signaling pathway showed increased phosphorylation of the insulin receptor (IR) and protein kinase B (Akt), suggesting that S-nitrosothiols may have an effect on the insulin signaling pathway. Together, these data showed that S-nitrosothiols promote normal insulin action, suggesting that they may act as potential pharmacological tools. In the second part of this research work we used liver-specific ROCK1 knockout mice fed a high-fat (HF) diet. Liver-specific deletion of ROCK1 prevented obesity, improved insulin sensitivity and protected against hepatic steatosis. Deficiency of ROCK1 in the liver caused a significant decrease in the gene expression of lipogenesis associated gene, ultimately leading to decreased lipogenesis. Contrariwise, ROCK1 overexpression in the liver promoted insulin resistance and hepatic steatosis in diet-induced obesity. Furthermore, liver-specific deletion of ROCK1 in obese and diabetic mice, the leptin-deficient mice, improved the typical hyperglycemia, hyperinsulinemia and liver steatosis. Together, these data identify ROCK1 as a crucial regulator of lipid metabolism. In the third and final part of this research work we investigated the effect of MSM, an organosulfur compound naturally found in plants and used as a dietary supplement, on diet-induced obese (DIO) and insulin resistant mice. MSM treatment ameliorated insulin resistance and protected against hepatosteatosis. Hepatic content in triglycerides and cholesterol was significantly decreased by MSM treatment, as well as lipogenesis associated gene expression. Furthermore, MSM treated mice had decreased inflammation associated gene expression in the liver. Importantly, FACS analysis showed that MSM treatment rescued the inflammatory hematopoietic phenotype of DIO mice in the bone marrow and the peripheral blood. Moreover, MSM treatment of the obese and diabetic mice, the leptin-deficient mice, resulted in similar effects as the ones observed for DIO mice. Collectively, these data suggest that MSM supplementation has a beneficial effect on hyperinsulinemia, insulin resistance and inflammation, which are often found in type 2 diabetes. In conclusion, this research work showed that S-nitrosothiols may play a role as insulin sensitizers, restoring insulin sensitivity in a setting of high-sucrose induced insulin resistance. Furthermore, in vitro studies suggest that S-nitrosothiols specifically regulate the insulin signaling pathway. This research work also investigated the role of hepatic ROCK1 in regulation of glucose and lipid metabolism. Using liver-specific ROCK 1 knockout and ROCK1 overexpressing mice it was shown that ROCK1 plays a role in the pathogenesis of obesity and type 2 diabetes, specifically through regulation of the de novo lipogenesis pathway. Finally, this research work aimed to explore the effect of MSM in DIO and leptin receptor-deficient mice. MSM strongly protects against obesity and insulin resistance, moreover showed a robust ability to decrease inflammation. Together, the individual studies that compose this dissertation showed that S-nitrosothiols and ROCK1 play a role in the pathogenesis of obesity and type 2 diabetes and that MSM supplementation may have a role in the treatment of metabolic disorders.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
PURPOSE: To determine the frequency of coronary artery disease, microalbuminuria and the relation to lipid profile disorders, blood pressure and clinical and metabolic features. METHODS: Fifty-five type 2 diabetic patients (32 females, 23 males), aged 59.9±9 years and with known diabetes duration of 11±7.3 years were studied. Coronary artery disease (CAD) was defined as a positive history of myocardial infarction, typical angina, myocardial revascularization or a positive stress testing. Microalbuminuria was defined when two out of three overnight urine samples had a urinary albumin excretion ranging 20 - 200µg/min. RESULTS: CAD was present in 24 patients (43,6%). High blood pressure (HBP) present in 32 patients (58.2%) and was more frequent in CAD group (p=0.05) HBP. Increased the risk of CAD 3.7 times (CI[1.14-12]). Microalbuminuria was present in 25 patients (45.5%) and tended to associate with higher systolic blood pressure (SBP) (p = 0.06), presence of hypertension (p = 0.06) and know diabetes duration (p = 0.08). In the stepwise multiple logistic regression the systolic blood pressure was the only variable that influenced UAE (r = 0.39, r² = 0.14, p = 0.01). The h ypertensive patients had higher cholesterol levels (p = 0.04). CONCLUSION: In our sample the frequency of microalbuminuria, hypertension, hypercholesterolemia and CHD was high. Since diabetes is an independent risk factor for cardiovascular disease, the association of others risk factors suggest the need for an intensive therapeutic intervention in primary and in secundary prevention.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
OBJECTIVE: To describe the lipid profile and to verify its relationship with cardiovascular disease risk factors in students at a public university in São Paulo. METHODS: After obtaining clinical, anthropomorphic, and lipid profile data from 118 students, variables of the lipid profile were related to other risk factors. RESULTS: The mean age of the students was 20.3 years (SD=1.5). The risk of cardiovascular disease was characterized by a positive family history of ischemic heart disease in 38.9%; sedentariness in 35.6%; limiting and increased total and LDL-C cholesterol levels in 17.7% and 10.2%, respectively; decreased HDL-C levels in 11.1%; increased triglyceride levels in 11.1%; body mass index >25 in 8.5%, and smoking in 6.7% of the subjects. Students' diet was found to be inadequate regarding protein, total fat, saturated fat, sodium, and fiber contents. A statistically significant association between cholesterol and contraceptive use, between HDL-C and contraceptive use, age and percent body fat, and triglycerides and percent lean weight was observed. CONCLUSION: A high prevalence of some risk factors of cardiovascular disease as well as the association between these factors with altered lipid profiles was observed in the young population studied.