934 resultados para Linear system solve


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a new on-line learning algorithm for the non-linear system identification: the swarm intelligence aided multi-innovation recursive least squares (SI-MRLS) algorithm. The SI-MRLS algorithm applies the particle swarm optimization (PSO) to construct a flexible radial basis function (RBF) model so that both the model structure and output weights can be adapted. By replacing an insignificant RBF node with a new one based on the increment of error variance criterion at every iteration, the model remains at a limited size. The multi-innovation RLS algorithm is used to update the RBF output weights which are known to have better accuracy than the classic RLS. The proposed method can produces a parsimonious model with good performance. Simulation result are also shown to verify the SI-MRLS algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of state estimation occurs in many applications of fluid flow. For example, to produce a reliable weather forecast it is essential to find the best possible estimate of the true state of the atmosphere. To find this best estimate a nonlinear least squares problem has to be solved subject to dynamical system constraints. Usually this is solved iteratively by an approximate Gauss–Newton method where the underlying discrete linear system is in general unstable. In this paper we propose a new method for deriving low order approximations to the problem based on a recently developed model reduction method for unstable systems. To illustrate the theoretical results, numerical experiments are performed using a two-dimensional Eady model – a simple model of baroclinic instability, which is the dominant mechanism for the growth of storms at mid-latitudes. It is a suitable test model to show the benefit that may be obtained by using model reduction techniques to approximate unstable systems within the state estimation problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We test the expectations theory of the term structure of U.S. interest rates in nonlinear systems. These models allow the response of the change in short rates to past values of the spread to depend upon the level of the spread. The nonlinear system is tested against a linear system, and the results of testing the expectations theory in both models are contrasted. We find that the results of tests of the implications of the expectations theory depend on the size and sign of the spread. The long maturity spread predicts future changes of the short rate only when it is high.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Hill's equations-even in the linear original version are a describer of phenomenon having chaotic flavor, giving sometimes very unusual situations. The theory of the so called intervals of instability in the equation provides the precise description for most of these phenomena. Considerations on nonlinearities into the Hill's equation is a quite recent task. The linearized version for almost of these systems it reduces to the Hill's classical linear one. In this paper, some indicative facts are pointed out on the possibility of having the linear system stabilizable and/or exactly controllable. As consequence of such an approach we get results having strong classical aspects, like the one talking about location of parameters in intervals of stability. A result for nonlinear proper periodic controls, is considered too. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, short term hydroelectric scheduling is formulated as a network flow optimization model and solved by interior point methods. The primal-dual and predictor-corrector versions of such interior point methods are developed and the resulting matrix structure is explored. This structure leads to very fast iterations since it avoids computation and factorization of impedance matrices. For each time interval, the linear algebra reduces to the solution of two linear systems, either to the number of buses or to the number of independent loops. Either matrix is invariant and can be factored off-line. As a consequence of such matrix manipulations, a linear system which changes at each iteration has to be solved, although its size is reduced to the number of generating units and is not a function of time intervals. These methods were applied to IEEE and Brazilian power systems, and numerical results were obtained using a MATLAB implementation. Both interior point methods proved to be robust and achieved fast convergence for all instances tested. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A curve defined over a finite field is maximal or minimal according to whether the number of rational points attains the upper or the lower bound in Hasse-Weil's theorem, respectively. In the study of maximal curves a fundamental role is played by an invariant linear system introduced by Ruck and Stichtenoth in [6]. In this paper we define an analogous invariant system for minimal curves, and we compute its orders and its Weierstrass points. In the last section we treat the case of curves having genus three in characteristic two.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, it is represented by state variables phase a transmission line which parameters are considered frequency independently and frequency dependent. It is analyzed what is the reasonable number of pi circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effect of frequency in the longitudinal parameters. Initially, it is used state variables and pi circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described transmission lines and the frequency influence in these lines through the state variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This model connects directly the radar reflectivity data and hydrological variable runoff. The catchment is discretized in pixels (4 Km × 4 Km) with the same resolution of the CAPPI. Careful discretization is made so that every grid catchment pixel corresponds precisely to CAPPI grid cell. The basin is assumed a linear system and also time invariant. The forecast technique takes advantage of spatial and temporal resolutions obtained by the radar. The method uses only the measurements of the factor reflectivity distribution observed over the catchment area without using the reflectivity - rainfall rate transformation by the conventional Z-R relationships. The reflectivity values in each catchment pixel are translated to a gauging station by using a transfer function. This transfer function represents the travel time of the superficial water flowing through pixels in the drainage direction ending at the gauging station. The parameters used to compute the transfer function are concentration time and the physiographic catchment characteristics. -from Authors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The linear properties of an electromagnetic drift-wave model are examined. The linear system is non-normal in that its eigenvectors are not orthogonal with respect to the energy inner product. The non-normality of the linear evolution operator can lead to enhanced finite-time growth rates compared to modal growth rates. Previous work with an electrostatic drift-wave model found that nonmodal behavior is important in the hydrodynamic limit. Here, similar behavior is seen in the hydrodynamic regime even with the addition of magnetic fluctuations. However, unlike the results for the electrostatic drift-wave model, nonmodal behavior is also important in the adiabatic regime with moderate to strong magnetic fluctuations. © 2000 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high parton density effects are strongly dependent of the spatial gluon distribution within the proton, with radius R, which cannot be derived from perturbative QCD. In this paper we assume that the unitarity corrections are present in the HERA kinematical region and constrain the value of R using the data for the proton structure function and its slope. We obtain that the gluons are not distributed uniformly in the whole proton disc, but behave as concentrated in smaller regions. (C) 2000 Elsevier Science B.V.