994 resultados para Linear Viscoelastic Materials
Resumo:
We discuss the modeling of dielectric responses of electromagnetically excited networks which are composed of a mixture of capacitors and resistors. Such networks can be employed as lumped-parameter circuits to model the response of composite materials containing conductive and insulating grains. The dynamics of the excited network systems are studied using a state space model derived from a randomized incidence matrix. Time and frequency domain responses from synthetic data sets generated from state space models are analyzed for the purpose of estimating the fraction of capacitors in the network. Good results were obtained by using either the time-domain response to a pulse excitation or impedance data at selected frequencies. A chemometric framework based on a Successive Projections Algorithm (SPA) enables the construction of multiple linear regression (MLR) models which can efficiently determine the ratio of conductive to insulating components in composite material samples. The proposed method avoids restrictions commonly associated with Archie’s law, the application of percolation theory or Kohlrausch-Williams-Watts models and is applicable to experimental results generated by either time domain transient spectrometers or continuous-wave instruments. Furthermore, it is quite generic and applicable to tomography, acoustics as well as other spectroscopies such as nuclear magnetic resonance, electron paramagnetic resonance and, therefore, should be of general interest across the dielectrics community.
Resumo:
Novel acid-terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid-catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white-spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans-esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol-functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins.
Resumo:
This study aimed at evaluating the thermal performance of a modular ceiling system for poultry houses. The reduced- and distorted-scale prototypes used ceiling modules made of reforested wood and were covered with recycled long-life package tiles. The following parameters were measured for 21 days: the internal surface temperature (ST), globe temperature and humidity index (WBGT), and radiant heat load (RHL). Measurements were made at times of highest heat load (11:00 am, 13:00 pm, and 03:00 pm). Collected data were analyzed by ""R"" statistics software. Means were compared by multiple comparison test (Tukey) and linear regression was performed, both at 5% significance level. The results showed that the prototype with the ceiling was more efficient to reduce internal tile surface temperature; however, this was not sufficient to provide a comfortable environment for broilers during the growout. Therefore, other techniques to provide proper cooling are required in addition to the ceiling
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP
Resumo:
This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.
Resumo:
Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This study evaluated the effect of disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min) on the linear dimensional change (LDC) of four reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) and one heat-polymerizing denture base resin (Lucitone 550-L). Methods: Specimens (50.0 mm diameter, 0.5 mm thickness) were made using a split mold with reference points, and divided into two controls and four test groups (u = 8). The distances between the points were measured on the mold (baseline readings), and compared to those obtained from the specimens after: polymerization or immersion in water (37 degrees C) for 7 days (controls); 2 or 7 cycles of disinfection by immersion or microwave irradiation. Results: the two-way ANOVA and Tukey's test (alpha = 0.05) showed that microwave disinfection significantly increased the mean LDC of materials L (-1.43%), N (-1.27%) and K (-1.06%). Material N also exhibited a significant increase in LDC after two cycles of chemical disinfection (-0.73%). For U (-0.47%) and T (-0.21%) materials, no significant changes in LDC were found. Conclusions: Microwave disinfection increases the shrinkage of materials L, N, and K. The dimensional stability of resins U and T was not affected by the disinfection methods evaluated. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this paper was to analyze the influence of incorporation of disinfectants during the cast die stone-setting time. Setting time, linear dimensional stability, and reproduction details on casts were measured.Materials and Methods: Die stone type IV specimens with disinfection solutions (sodium hypochlorite 1%, glutaraldehyde 2%, chlorhexidine 2%) were incorporated in two concentrations (50%, 100%). The detail reproduction, dimensional stability, and setting time were tested in accordance with ADA recommendations.Results: Disinfecting solutions promoted an increase in setting time compared to control; sodium hypochlorite was responsible for the highest setting time. The addition of undiluted sodium hypochlorite 1.0% led to contraction during setting, but the groups with 50% diluted sodium hypochlorite 1.0% and undiluted chlorhexidine 2.0% resulted in intermediate values compared to the other groups, thus matching the control. The others did not demonstrate any effect on expansion. For detail reproduction, it was observed that the control group presented results similar to the others, except those where sodium hypochlorite was added.Conclusions The addition of sodium hypochlorite in both dilutions significantly altered, negatively, all the evaluated properties. But the addition of glutaraldehyde and chlorhexidine did not promote any significant alterations in the evaluated properties.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed at evaluating the thermal performance of a modular ceiling system for poultry houses. The reduced- and distorted-scale prototypes used ceiling modules made of reforested wood and were covered with recycled long-life package tiles. The following parameters were measured for 21 days: tile internal surface temperature (ST), globe temperature and humidity index (WBGT), and radiant heat load (RHL). Measurements were made at times of highest heat load (11:00 am, 13:00 pm, and 03:00 pm). Collected data were analyzed by R statistics software. Means were compared by multiple comparison test (Tukey) and linear regression was performed, both at 5% significance level. The results showed that the prototype with the ceiling was more efficient to reduce internal tile surface temperature; however, this was not sufficient to provide a comfortable environment for broilers during the growout. Therefore, other techniques to provide proper cooling are required in addition to the ceiling.
Resumo:
The viscoelastic behavior of dried persimmons at different air-drying temperatures and velocities was evaluated. Air temperatures and velocities were varied according to a second-order central composite design, with temperature ranging from 40degreesC to 70degreesC and air velocity from 0.8 to 2.0 m/s. After drying, persimmons were equilibrated at four different water activities: 0.432, 0.576, 0.625 and 0.751. The rheological behavior of dried and conditioned persimmons was studied under uniaxial compression-relaxation tests. Three different rheological models were fitted to the experimental relaxation curves: Maxwell, Generalized Maxwell and Peleg and Normand. Based on the root mean square of residuals, the Generalized Maxwell model showed the best fit and a regression analysis was applied to obtain response surfaces for the model parameters. The dependence of the rheological properties on water activity was also analysed. Results showed that only the linear effect of air temperature was significant at a 5% level on the equilibrium stress and relaxation times. In a general way, these parameters increased with increasing air temperature and decreasing water activity. (C) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.