984 resultados para Linear Optimization
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
Diese Arbeit umfaßt das elektromechanische Design und die Designoptimierung von weit durchstimmbaren optischen multimembranbasierten Bauelementen, mit vertikal orientierten Kavitäten, basierend auf der Finiten Element Methode (FEM). Ein multimembran InP/Luft Fabry-Pérot optischer Filter wird dargestellt und umfassend analysiert. In dieser Arbeit wird ein systematisches strukturelles Designverfahren dargestellt. Genaue analytische elektromechanischer Modelle für die Bauelemente sind abgeleitet worden. Diese können unschätzbare Werkzeuge sein, um am Anfang der Designphase schnell einen klaren Einblick zur Verfügung zu stellen. Mittels des FEM Programms ist der durch die nicht-lineare Verspannung hervorgerufene versteifende Effekt nachgeforscht und sein Effekt auf die Verlängerung der mechanischen Durchstimmungsstrecke der Bauelemente demonstriert worden. Interessant war auch die Beobachtung, dass die normierte Relation zwischen Ablenkung und Spannung ein unveränderliches Profil hat. Die Deformation der Membranflächen der in dieser Arbeit dargestellten Bauelementformen erwies sich als ein unerwünschter, jedoch manchmal unvermeidbarer Effekt. Es zeigt sich aber, dass die Wahl der Größe der strukturellen Dimensionen den Grad der Membrandeformation im Falle der Aktuation beeinflusst. Diese Arbeit stellt ein elektromechanisches in FEMLAB implementierte quasi-3D Modell, das allgemein für die Modellierung dünner Strukturen angewendet werden kann, dar; und zwar indem man diese als 2D-Objekte betrachtet und die dritte Dimension als eine konstante Größe (z.B. die Schichtdicke) oder eine Größe, welche eine mathematische Funktion ist, annimmt. Diese Annahme verringert drastisch die Berechnungszeit sowie den erforderlichen Arbeitsspeicherbedarf. Weiter ist es für die Nachforschung des Effekts der Skalierung der durchstimmbaren Bauelemente verwendet worden. Eine neuartige Skalierungstechnik wurde abgeleitet und verwendet. Die Ergebnisse belegen, dass das daraus resultierende, skalierte Bauelement fast genau die gleiche mechanische Durchstimmung wie das unskalierte zeigt. Die Einbeziehung des Einflusses von axialen Verspannungen und Gradientenverspannungen in die Berechnungen erforderte die Änderung der Standardimplementierung des 3D Mechanikberechnungsmodus, der mit der benutzten FEM Software geliefert wurde. Die Ergebnisse dieser Studie zeigen einen großen Einfluss der Verspannung auf die Durchstimmungseigenschaften der untersuchten Bauelemente. Ferner stimmten die Ergebnisse der theoretischen Modellrechnung mit den experimentellen Resultaten sehr gut überein.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
There have been various techniques published for optimizing the net present value of tenders by use of discounted cash flow theory and linear programming. These approaches to tendering appear to have been largely ignored by the industry. This paper utilises six case studies of tendering practice in order to establish the reasons for this apparent disregard. Tendering is demonstrated to be a market orientated function with many subjective judgements being made regarding a firm's environment. Detailed consideration of 'internal' factors such as cash flow are therefore judged to be unjustified. Systems theory is then drawn upon and applied to the separate processes of estimating and tendering. Estimating is seen as taking place in a relatively sheltered environment and as such operates as a relatively closed system. Tendering, however, takes place in a changing and dynamic environment and as such must operate as a relatively open system. The use of sophisticated methods to optimize the value of tenders is then identified as being dependent upon the assumption of rationality, which is justified in the case of a relatively closed system (i.e. estimating), but not for a relatively open system (i.e. tendering).
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.
Resumo:
We propose a new sparse model construction method aimed at maximizing a model’s generalisation capability for a large class of linear-in-the-parameters models. The coordinate descent optimization algorithm is employed with a modified l1- penalized least squares cost function in order to estimate a single parameter and its regularization parameter simultaneously based on the leave one out mean square error (LOOMSE). Our original contribution is to derive a closed form of optimal LOOMSE regularization parameter for a single term model, for which we show that the LOOMSE can be analytically computed without actually splitting the data set leading to a very simple parameter estimation method. We then integrate the new results within the coordinate descent optimization algorithm to update model parameters one at the time for linear-in-the-parameters models. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
Resumo:
The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.
Resumo:
In this paper we study the problem of maximizing a quadratic form 〈Ax,x〉 subject to ‖x‖q=1, where A has matrix entries View the MathML source with i,j|k and q≥1. We investigate when the optimum is achieved at a ‘multiplicative’ point; i.e. where x1xmn=xmxn. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0
Resumo:
Conventional procedures employed in the modeling of viscoelastic properties of polymer rely on the determination of the polymer`s discrete relaxation spectrum from experimentally obtained data. In the past decades, several analytical regression techniques have been proposed to determine an explicit equation which describes the measured spectra. With a diverse approach, the procedure herein introduced constitutes a simulation-based computational optimization technique based on non-deterministic search method arisen from the field of evolutionary computation. Instead of comparing numerical results, this purpose of this paper is to highlight some Subtle differences between both strategies and focus on what properties of the exploited technique emerge as new possibilities for the field, In oder to illustrate this, essayed cases show how the employed technique can outperform conventional approaches in terms of fitting quality. Moreover, in some instances, it produces equivalent results With much fewer fitting parameters, which is convenient for computational simulation applications. I-lie problem formulation and the rationale of the highlighted method are herein discussed and constitute the main intended contribution. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 122-135, 2009