936 resultados para Limitation of liability
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development.
Resumo:
A total of 86 profiles from meat and egg strains of chickens (male and female) were used in this study. Different flexible growth functions were evaluated with regard to their ability to describe the relationship between live weight and age and were compared with the Gompertz and logistic equations, which have a fixed point of inflection. Six growth functions were used: Gompertz, logistic, Lopez, Richards, France, and von Bertalanffy. A comparative analysis was carried out based on model behavior and statistical performance. The results of this study confirmed the initial concern about the limitation of a fixed point of inflection, such as in the Gompertz equation. Therefore, consideration of flexible growth functions as an alternatives to the simpler equations (with a fixed point of inflection) for describing the relationship between live weight and age are recommended for the following reasons: they are easy to fit, they very often give a closer fit to data points because of their flexibility and therefore a smaller RSS value, than the simpler models, and they encompasses simpler models for the addition of an extra parameter, which is especially important when the behavior of a particular data set is not defined previously.
Resumo:
A limitation of small-scale dairy systems in central Mexico is that traditional feeding strategies are less effective when nutrient availability varies through the year. In the present work, a linear programming (LP) model that maximizes income over feed cost was developed, and used to evaluate two strategies: the traditional one used by the small-scale dairy producers in Michoacan State, based on fresh lucerne, maize grain and maize straw; and an alternative strategy proposed by the LIP model, based on ryegrass hay, maize silage and maize grain. Biological and economic efficiency for both strategies were evaluated. Results obtained with the traditional strategy agree with previously published work. The alternative strategy did not improve upon the performance of the traditional strategy because of low metabolizable protein content of the maize silage considered by the model. However, the Study recommends improvement of forage quality to increase the efficiency of small-scale dairy systems, rather than looking for concentrate supplementation.
Resumo:
Purpose – UK Government policy to address perceived market failure in commercial property leasing has largely been pursued through industry self-regulation. Yet, it is proving difficult to assess whether self-regulation on leasing has been a “success”, or even to determine how to evaluate this. The purpose of this paper is to provide a framework for this and a clearer understanding of self-regulation in commercial leasing. Design/methodology/approach – A literature review suggests key criteria to explain the (in)effectiveness of self-regulation. UK lease codes are analysed in the light of this literature, drawing on previous research carried out by the authors on the operation of these codes. Findings – Lease codes appear to be failing as an effective system of self-regulation. While there are influential market actors championing them, the fragmentation of the leasing process lessens this influence. The structures are not there to ensure implementation, monitor compliance and record views of affected stakeholders. Research limitations/implications – This work adds to the literature on self-regulation in general, and provides an insight into its operation in a previously unexplored industry. Research is needed into the experience of other countries in regulating the property industry by voluntary means. Social implications – There are institutional limitations to self-regulation within the property industry. This has implications for policy makers in considering the advantages and limitation of using a voluntary solution to achieve policy aims within the commercial leasing market. Originality/value – This paper provides a first step in considering the lease codes in the wider context of industry self-regulation and is relevant to policy makers and industry bodies.
Resumo:
Salmonella enterica serotypes Derby, Mbandaka, Montevideo, Livingstone, and Senftenberg were among the 10 most prevalent serotypes isolated from farm animals in England and Wales in 1999. These serotypes are of potential zoonotic relevance; however, there is currently no "gold standard" fingerprinting method for them. A collection of isolates representing the former serotypes and serotype Gold Coast were analyzed using plasmid profiling, pulsed-field gel electrophoresis (PFGE), and ribotyping. The success of the molecular methods in identifying DNA polymorphisms was different for each serotype. Plasmid profiling was particularly useful for serotype Derby isolates, and it also provided a good level of discrimination for serotype Senftenberg. For most serotypes, we observed a number of nontypeable plasmid-free strains, which represents a limitation of this technique. Fingerprinting of genomic DNA by ribotyping and PFGE produced a significant variation in results, depending on the serotype of the strain. Both PstI/SphI ribotyping and XbaI-PFGE provided a similar degree of strain differentiation for serotype Derby and serotype Senftenberg, only marginally lower than that achieved by plasmid profiling. Ribotyping was less sensitive than PFGE when applied to serotype Mbandaka or serotype Montevideo. Serotype Gold Coast isolates were found to be nontypeable by XbaI-PFGE, and a significant proportion of them were found to be plasmid free. A similar situation applies to a number of serotype Livingstone isolates which were nontypeable by plasmid profiling and/or PFGE. In summary, the serotype of the isolates has a considerable influence in deciding the best typing strategy; a single method cannot be relied upon for discriminating between strains, and a combination of typing methods allows further discrimination.
Resumo:
Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.
Resumo:
In this paper we have proposed and analyzed a simple mathematical model consisting of four variables, viz., nutrient concentration, toxin producing phytoplankton (TPP), non-toxic phytoplankton (NTP), and toxin concentration. Limitation in the concentration of the extracellular nutrient has been incorporated as an environmental stress condition for the plankton population, and the liberation of toxic chemicals has been described by a monotonic function of extracellular nutrient. The model is analyzed and simulated to reproduce the experimental findings of Graneli and Johansson [Graneli, E., Johansson, N., 2003. Increase in the production of allelopathic Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2, 135–145]. The robustness of the numerical experiments are tested by a formal parameter sensitivity analysis. As the first theoretical model consistent with the experiment of Graneli and Johansson (2003), our results demonstrate that, when nutrient-deficient conditions are favorable for the TPP population to release toxic chemicals, the TPP species control the bloom of other phytoplankton species which are non-toxic. Consistent with the observations made by Graneli and Johansson (2003), our model overcomes the limitation of not incorporating the effect of nutrient-limited toxic production in several other models developed on plankton dynamics.
Resumo:
An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, and this results from an improvement in the atmospheric patterns of variability as well as a simple improvement in the mean state. There is some evidence that the transient eddy momentum forcing of European blocks is increased at high resolution, which could account for this. However, it is also shown that the increase in resolution of the orography is needed to realise the improvement in blocking, consistent with the increase in height of the Rocky Mountains acting to increase the tilt of the Atlantic jet stream and giving higher mean geopotential heights over northern Europe. Blocking frequencies in the Pacific sector are also increased with atmospheric resolution, but in this case the improvement in orography actually leads to a decrease in blocking
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.
Resumo:
Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.
Resumo:
The three poikilophydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F, to almost zero. Upon rewatering, the kinetics of the recovery of F in air dry cushions to higher values is very fast in the first 5min, but more than 80min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta C-13, delta N-15) indicate that liquid films of water limiting diffusion of CO2 are important in determining carbon acquisition and suggest that limitation of CO2 fixation by water films must be more pronounced over time in P vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.
Resumo:
Inspired by the recent work on approximations of classical logic, we present a method that approximates several modal logics in a modular way. Our starting point is the limitation of the n-degree of introspection that is allowed, thus generating modal n-logics. The semantics for n-logics is presented, in which formulas are evaluated with respect to paths, and not possible worlds. A tableau-based proof system is presented, n-SST, and soundness and completeness is shown for the approximation of modal logics K, T, D, S4 and S5. (c) 2008 Published by Elsevier B.V.