965 resultados para Lily leaf beetle
Resumo:
Studies on nutritional status and leaf traits were carried out in two tropical tree species Swietenia macrophylla King (mahogany) and Dipetryx odorata Aubl. Willd. (tonka bean) planted under contrasting light environments in Presidente Figueiredo-AM, Brazil. Leaves of S. macrophylla and D. odorata were collected in three year-old trees grown under full sunlight (about 2000 µmol m-2 s-1) and natural shade under a closed canopy of Balsa-wood plantation (Ochroma pyramidale Cav. Ex. Lam.Urb) about 260 µmol m-2 s-1. The parameters analysed were leaf area (LA), leaf dry mass (LDM), specific leaf area (SLA) and leaf nutrient contents. It was observed that, S. macrophylla leaves grown under full sunlight showed LA 35% lower than those grown under shade. In D. odorata leaves these differences in LA were not observed. In addition, it was observed that S. macrophylla shade leaves, for LDM, were 50% smaller than sun leaves, while in D. odorata, there differences were not observed. SLA in S. macrophylla presented that sun leaves were three times smaller than those grown under shade. In D. odorata, no differences were observed. Nutrient contents in S. macrophylla, regardless of their light environments, showed higher contents for P and Ca than those found in D. odorata. The N, K, Fe and Mn contents in S. macrophylla leaves decreased under shade. Finally, we suggest that the decreasing in leaf nutrient contents may have a negative influence on leaf growth. The results demonstrated that the tested hypothesis is true for leaf traits, which D. odorata, late-successional species, showed lower plasticity for leaf traits than Swietenia macrophylla, mid-successional species.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
Essential oils from leaves and fruits of Protiumheptaphyllum collected in Tamandaré beach Pernambuco/Brazil were analysed by GC/MS and tested for toxicity and repellent effect against the two spotted spider mite (Tetranychus urticae). The major constituent identified in the fruits was alpha-terpinene (47.6 %) whereas oil from leaf contained mainly sesquiterpenes such as 9-epi-caryophyllene (21.4 %), trans-isolongifolanone (10.7 %) and 14-hydroxi-9-epi-caryophyllene (16.7 %). The fruit oil was found to be more effective against the mite when compared to the leaf oil. Both showed mortality properties and oviposition deterrence in higher concentration (10 µl.l-1 air), but only the essential oil from fruits induced repellence on T. urticae.
Resumo:
Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.
Resumo:
Theobroma species have economic importance due to their use in the cosmetic and food industries, mainly in the production of chocolate. However, the anatomy of their vegetative structures remains poorly studied. The goal of this study was to describe the anatomical features of Theobroma grandiflorum, T. speciosum and T. subincanum to contribute to the biological knowledge of these species, as well as provide support to the biotechnological studies of native fruit plants of the Amazon. Leaves at different developmental stages were collected and analyzed under light microscopy and scanning electron microscopy. Sessile and stalked stellate trichomes and digitiform glandular trichomes were observed in the expanded leaves of T. grandiflorum and T. subincanum. These species were also similar in the morphology of the midrib, the organization of the mesophyll and the presence of starch grains in the midrib pith cells. Claviform glandular trichomes and mucilage cells in the epidermis occurred only in the expanded leaves of T. speciosum. The presence of mucilage secretory trichomes in shoot apices (colleters) of all species is a new finding for the genus Theobroma.
Resumo:
Mapania belongs to Mapanioideae, a quite controversial subfamily in Cyperaceae due to the existence of unusual characters in both reproductive and vegetative organs. The genus is represented by seven species in Northern Brazil but taxonomic valuable information related to the leaf organs is still unknown. The present study aimed the anatomical description of the leaf organs (either basal leaves or cataphylls and involucral bracts) of three representative Brazilian species of Mapania. Samples of cataphylls, basal leaves and involucral bracts were sectioned and stained for observations under light microscopy. The involucral bracts provide the most elucidative characters (ten) to distinguish the three species The basal leaves provides six distinguishing characters and are useful to M. macrophylla and M. pycnostachya, as they are absent in M. sylvatica. Mesophyll arrangement in the involucral bracts supports the circumscription of M. macrophylla and M. pycnostachya in M. sect. Pycnocephala and of M. sylvatica in M. sect. Mapania. Some features as thin-walled epidermal cells, stomata level and aerenchyma were considered to be adaptive to the humid environment in which the species occur. The translucent cells are here considered as aerenchyma precursors and a supportive function is assumed for the bulliform cells on the basal leaves and involucral bracts. No silica bodies were found which confirm it as a diagnostic character of Mapania among Hypolytreae genera.
Resumo:
Morphological studies focusing on vegetative traits are useful in identifying species when fertile material is not available. The aim of this study was to assess the application of comparative leaf morphology to identify species of the Chrysobalanaceae family. The morphological observations were made with a stereomicroscope. We used the diaphanization technique for viewing venation details. It is shown the descriptions of the leaf morphology, illustrations and an identification key for 20 species from genera Couepia, Licania and Parinari (Chrysobalanaceae) occurring in the Adolpho Ducke Forest Reserve, Manaus, AM, Brazil. The key was constructed using the DELTA (DEscription Language for TAxonomy) software. Leaf traits such as the presence of intersecondary venation and the type of insertion of secondary veins were recorded for each species. These morphological leaf traits are reliable for identifying species of Chrysobalanaceae
Resumo:
ABSTRACT Leaves have a variety of morphological and anatomical characters mainly influenced by climatic, edaphic and biotic factors. The aim of this study was to describe the anatomical leaf traits of Qualea parviflora from three phytophysiognomies. The studied phytophysiognomies were Amazon Savannah on rocky outcrops (ASR), Transition Rupestrian Cerrado (TRC), and Cerradão (CDA). Freehand sections of the leaf blade were made and stained with 0.5% astra blue and with basic fuchsin. From the adaxial and abaxial leaf surface, freehand paradermal sections were made for epidermis analysis. The Jeffrey´s method, with modifications, was used in the epidermis dissociation process. The samples from the TRC phytophysiognomy had relatively smaller ordinary epidermal cells, higher abundance of trichomes, and mesophyll with few intercellular spaces, in comparison to the other phytophysiognomies. The leaves from the ASR phytophysiognomy had higher stomatal index (SI = 21.02), and five to six layers of sclerenchyma surrounding the midrib vascular bundle. The secondary vascular bundles had thicker cell walls and the bundle sheath extended up to the epidermal tissue of both leaf sides. Leaves from the CDA phytophysiognomy had mesomorphic environmental traits, such as a thinner cuticle. It is concluded that trees from ASR and TRC phytophysiognomies have xeromorphic traits following the environmental conditions where they occur.
Resumo:
A galactose-specific lectin from Bauhinia monandra leaves (BmoLL) have been purified through ammonium sulphate fractionation followed by guar gel affinity chromatography column. This study aimed to evaluate the potential anti-inflammatory and antinociceptive activity of pure BmoLL in mice. Anti-inflammatory activity was evaluated by 1% carrageenan-induced inflammation in mice treated with BmoLL. Acetic acid-induced abdominal writhing and hot plate methods evaluated antinociceptive activity. BmoLL significantly inhibited the carrageenan-induced paw edema by 47% (30 mg/kg) and 60.5% (60 mg/kg); acetylsalicylic acid (ASA, 100 mg/kg) showed inhibition of 70.5%, in comparison to controls. Leukocyte migration, an immune response to the inflammation process, was significantly reduced in presence of BmoLL; in mice treated with \ASA\ the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively.BmoLL leukocyte migration was significantly reduced; in mice treated with \ASA\ the decrease in leukocyte migration was similar to 15 mg/kg of the lectin. BmoLL at doses of 15, 30 and 60 mg/kg significantly reduced the number of animal contortions by 43.1, 50.1 and 71.3%, respectively. The lectin (30 and 60 mg/kg) showed a significant effect in the hot plate assay. BmoLL anti-inflammatory and antinociceptive effects were dose-dependent. The search for new and natural compounds, with minimal side effects, to control pain and inflammation, is constantly increasing. BmoLL has great potential as a natural anti-inflamatory product that can be explored for pharmacological purposes.
Effects of ethephon and urea on ripening of fruits and leaf abscission of coffee (Coffea arábica L.)
Resumo:
A field experiment was carried out to investigate the effects of ethephon and urea on ripening of fruits and leaf abscission of coffee plant. Ethephon (2-chloroethane phosphonic acid) sprays were applied to green Coffea arábica berries 26 days before counting date in concentrations of 0.5 and 0.25 ml/1 from Ethrel (240 a.i./l). The chemical accelerated the onset of fruit ripening at both concentrations. The efficacy of ethephon was increased adding urea. Ethephon 0.5 ml/1 promoted abscission of leaves and low concentration reduced shedding of leaves. The treatments did not affect the growth and production on the next harvest.
Resumo:
Damage caused by leaf pests of soybean on five cultivars was evaluated. Afield experiment was carried out at the Piracicaba region, cultivars Davis, IAC 73-228, PI 227.687,PI 171.451, and PI 229.358 having been compared. Leaf damage was produced by natural infestation of Anticarsia gemmatalis and Plusia sp. Cultivar PI 171.451 showed lower comsumption of leaves in relation to control ('Davis') and other cultivars. Damage was more serious on IAC 73-228 than on PI 227.687 and PI 229.358.
Resumo:
v.44:no.1(1961)
Resumo:
In this study we describe three new litter inhabiting species of Mesabolivar González-Sponga, 1998 from nine urban forest remnants in the metropolitan region of the city of São Paulo, Brazil: M. forceps, M. mairyara and M. cavicelatus. In three of these remnants, we conduced a three year sampling using pitfall traps. Mesabolivar forceps sp. nov. was the most abundant pholcid (n=273 adults), always present in the samples, but with highest numbers in spring and summer. Mesabolivar mairyara sp. nov. was the second most abundant species (n=32), but the majority of individuals were collected in March 2001. Only three individuals of M. cavicelatus sp. nov. were collected.
Resumo:
Leaf litter represents a food source to many organisms that may directly contribute to organic matter decomposition. In addition, the physical presence of these vegetal detritus contributes for the modification of some environmental areas and produce microhabitats that may act as a refuge against predators and desiccation for many animals. The pulmonate gastropod Melampus coffeus (Linnaeus, 1758) (Ellobiidae) is a very common specie in Atlantic Coast mangrove forests and feeds on fallen mangrove leaves. It was hypothesized that the spatial distribution of Melampus coffeus is directly affected by mangrove leaf litter biomass deposition. Thus, this research aimed at evaluating the spatial distribution of these gastropods in relation to the biomass of mangrove leaf litter through a twelve-month period. The study area was established in the middle estuary of Pacoti River, state of Ceará, Brazil where two adjacent zones with different topographic profiles were determined. Samples of Melampus coffeus and leaf litter were collected monthly, throughout a year, from the mangrove ground surface. The results indicated that the presence of twigs in mangrove litter favor the occupation by smaller individuals of M. coffeus, probably because smaller individuals are more susceptible to predator attacks and desiccation than larger ones, and twigs and branches may provide a safe microhabitat.