773 resultados para Learning from text


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work is to claim that engineers can be motivated to study statistical concepts by using the applications in their experience connected with Statistical ideas. The main idea is to choose a data from the manufacturing factility (for example, output from CMM machine) and explain that even if the parts used do not meet exact specifications they are used in production. By graphing the data one can show that the error is random but follows a distribution, that is, there is regularily in the data in statistical sense. As the error distribution is continuous, we advocate that the concept of randomness be introducted starting with continuous random variables with probabilities connected with areas under the density. The discrete random variables are then introduced in terms of decision connected with size of the errors before generalizing to abstract concept of probability. Using software, they can then be motivated to study statistical analysis of the data they encounter and the use of this analysis to make engineering and management decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter, the way in which varied terms such as Networked learning, e-learning and Technology Enhanced Learning (TEL) have each become colonised to support a dominant, economically-based world view of educational technology is discussed. Critical social theory about technology, language and learning is brought into dialogue with examples from a corpus-based Critical Discourse Analysis (CDA) of UK policy texts for educational technology between1997 and 2012. Though these policy documents offer much promise for enhancement of people’s performance via technology, the human presence to enact such innovation is missing. Given that ‘academic workload’ is a ‘silent barrier’ to the implementation of TEL strategies (Gregory and Lodge, 2015), analysis further exposes, through empirical examples, that the academic labour of both staff and students appears to be unacknowledged. Global neoliberal capitalist values have strongly territorialised the contemporary university (Hayes & Jandric, 2014), utilising existing naïve, utopian arguments about what technology alone achieves. Whilst the chapter reveals how humans are easily ‘evicted’, even from discourse about their own learning (Hayes, 2015), it also challenges staff and students to seek to re-occupy the important territory of policy to subvert the established order. We can use the very political discourse that has disguised our networked learning practices, in new explicit ways, to restore our human visibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subspaces and manifolds are two powerful models for high dimensional signals. Subspaces model linear correlation and are a good fit to signals generated by physical systems, such as frontal images of human faces and multiple sources impinging at an antenna array. Manifolds model sources that are not linearly correlated, but where signals are determined by a small number of parameters. Examples are images of human faces under different poses or expressions, and handwritten digits with varying styles. However, there will always be some degree of model mismatch between the subspace or manifold model and the true statistics of the source. This dissertation exploits subspace and manifold models as prior information in various signal processing and machine learning tasks.

A near-low-rank Gaussian mixture model measures proximity to a union of linear or affine subspaces. This simple model can effectively capture the signal distribution when each class is near a subspace. This dissertation studies how the pairwise geometry between these subspaces affects classification performance. When model mismatch is vanishingly small, the probability of misclassification is determined by the product of the sines of the principal angles between subspaces. When the model mismatch is more significant, the probability of misclassification is determined by the sum of the squares of the sines of the principal angles. Reliability of classification is derived in terms of the distribution of signal energy across principal vectors. Larger principal angles lead to smaller classification error, motivating a linear transform that optimizes principal angles. This linear transformation, termed TRAIT, also preserves some specific features in each class, being complementary to a recently developed Low Rank Transform (LRT). Moreover, when the model mismatch is more significant, TRAIT shows superior performance compared to LRT.

The manifold model enforces a constraint on the freedom of data variation. Learning features that are robust to data variation is very important, especially when the size of the training set is small. A learning machine with large numbers of parameters, e.g., deep neural network, can well describe a very complicated data distribution. However, it is also more likely to be sensitive to small perturbations of the data, and to suffer from suffer from degraded performance when generalizing to unseen (test) data.

From the perspective of complexity of function classes, such a learning machine has a huge capacity (complexity), which tends to overfit. The manifold model provides us with a way of regularizing the learning machine, so as to reduce the generalization error, therefore mitigate overfiting. Two different overfiting-preventing approaches are proposed, one from the perspective of data variation, the other from capacity/complexity control. In the first approach, the learning machine is encouraged to make decisions that vary smoothly for data points in local neighborhoods on the manifold. In the second approach, a graph adjacency matrix is derived for the manifold, and the learned features are encouraged to be aligned with the principal components of this adjacency matrix. Experimental results on benchmark datasets are demonstrated, showing an obvious advantage of the proposed approaches when the training set is small.

Stochastic optimization makes it possible to track a slowly varying subspace underlying streaming data. By approximating local neighborhoods using affine subspaces, a slowly varying manifold can be efficiently tracked as well, even with corrupted and noisy data. The more the local neighborhoods, the better the approximation, but the higher the computational complexity. A multiscale approximation scheme is proposed, where the local approximating subspaces are organized in a tree structure. Splitting and merging of the tree nodes then allows efficient control of the number of neighbourhoods. Deviation (of each datum) from the learned model is estimated, yielding a series of statistics for anomaly detection. This framework extends the classical {\em changepoint detection} technique, which only works for one dimensional signals. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ostensibly, BITs are the ideal international treaty. First, until just recently, they almost uniformly came with explicit dispute resolution mechanisms through which countries could face real costs for violation (Montt 2009). Second, the signing, ratification, and violation of them are easily accessible public knowledge. Thus countries presumably would face reputational costs for violating these agreements. Yet, these compliance devices have not dissuaded states from violating these agreements. Even more interestingly, in recent years, both developed and developing countries have moved towards modifying the investor-friendly provisions of these agreements. These deviations from the expectations of the credible commitment argument raise important questions about the field's assumptions regarding the ability of international treaties with commitment devices to effectively constrain state behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This session will provide you with opportunity to find out what is being achieved and explore the implications for your own practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge for international agricultural research is to find ways to improve the nutrition and incomes of people left behind by the Green Revolution. To better address the needs of the most marginal and vulnerable people, the CGIAR Research Program on Aquatic Agricultural Systems (AAS) developed the research-in-development (RinD) approach. In 2012, WorldFish started to implement RinD in Solomon Islands. By building people’s capacity to analyze and address development problems, actively engaging relevant stakeholders, and linking research to these processes, RinD aims to develop an alternative approach to addressing hunger and poverty. This report describes the key principles and implementation process, and assesses the emergent outcomes of this participatory, systems-oriented and transformative research approach in Solomon Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ergonomics is intrinsically connected to political debates about the good society, about how we should live. This article follows the ideas of Colin Ward by setting the practices of ergonomics and design along a spectrum between more libertarian approaches and more authoritarian. Within Anglo-American ergonomics, more authoritarian approaches tend to prevail, often against the wishes of designers who have had to fight with their employers for best possible design outcomes. The article draws on debates about the design and manufacturing of schoolchildren's furniture. Ergonomics would benefit from embracing these issues to stimulate a broader discourse amongst its practitioners about how to be open to new disciplines, particularly those in the social sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tested the prediction that, with age, children should rely less on familiarity and more on expertise in their selective social learning. Experiment 1 (N=50) found that 5- to 6-year-olds copied the technique their mother used to extract a prize from a novel puzzle box, in preference to both a stranger and an established expert. This bias occurred despite children acknowledging the expert model’s superior capability. Experiment 2 (N=50) demonstrated a shift in 7-to 8-year-olds towards copying the expert. Children aged 9- to 10-years did not copy according to a model bias. The findings of a follow-up study (N=30) confirmed that, instead, they prioritized their own – partially flawed – causal understanding of the puzzle box.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although errors might foster learning, they can also be perceived as something to avoid if they are associated with negative consequences (e.g., receiving a bad grade or being mocked by classmates). Such adverse perceptions may trigger negative emotions and error-avoidance attitudes, limiting the possibility to use errors for learning. These students’ reactions may be influenced by relational and cultural aspects of errors that characterise the learning environment. Accordingly, the main aim of this research was to investigate whether relational and cultural characteristics associated with errors affect psychological mechanisms triggered by making mistakes. In the theoretical part, we described the role of errors in learning using an integrated multilevel (i.e., psychological, relational, and cultural levels of analysis) approach. Then, we presented three studies that analysed how cultural and relational error-related variables affect psychological aspects. The studies adopted a specific empirical methodology (i.e., qualitative, experimental, and correlational) and investigated different samples (i.e., teachers, primary school pupils and middle school students). Findings of study one (cultural level) highlighted errors acquire different meanings that are associated with different teachers’ error-handling strategies (e.g., supporting or penalising errors). Study two (relational level) demonstrated that teachers’ supportive error-handling strategies promote students’ perceptions of being in a positive error climate. Findings of study three (relational and psychological level) showed that positive error climate foster students’ adaptive reactions towards errors and learning outcomes. Overall, our findings indicated that different variables influence students’ learning from errors process and teachers play an important role in conveying specific meanings of errors during learning activities, dealing with students’ mistakes supportively, and establishing an error-friendly classroom environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past, research in ontology learning from text has mainly focused on entity recognition, taxonomy induction and relation extraction. In this work we approach a challenging research issue: detecting semantic frames from texts and using them to encode web ontologies. We exploit a new generation Natural Language Processing technology for frame detection, and we enrich the frames acquired so far with argument restrictions provided by a super-sense tagger and domain specializations. The results are encoded according to a Linguistic MetaModel, which allows a complete translation of lexical resources and data acquired from text, enabling custom transformations of the enriched frames into modular ontology components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents research with small and medium enterprise (SME) owners who have participated in a leadership development programme. The primary focus of the paper is on learning transfer and factors affecting it, arguing that entrepreneurs must engage in ‘action’ in order to ‘learn’ and that under certain conditions they may transfer learning to their firm. The paper draws on data from 19 focus groups undertaken from 2010 to 2012, involving 51 participants in the LEAD Wales programme. It considers the literatures exploring learning transfer and develops a conceptual framework, outlining four areas of focus for entrepreneurial learning. Utilising thematic analysis, it describes and evaluates what (actual facts and information) and how (techniques, styles of learning) participants transfer and what actions they take to improve the business and develop their people. The paper illustrates the complex mechanisms involved in this process and concludes that action learning is a method of facilitating entrepreneurial learning which is able to help address some of the problems of engagement, relevance and value that have been highlighted previously. The paper concludes that the efficacy of an entrepreneurial learning intervention in SMEs may depend on the effectiveness of learning transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.