845 resultados para Learning Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this project was to analyze Galp’s loyalty approach in the Portuguese fuel market given the industry context, namely the entry of hypermarket and the resulting increase in competitiveness. The team performed analyses based on analytical models, qualitative research and internal interviews in order to assess Galp’s potential in the field of loyalty and consumers’ behavior. The final recommendations were based on incremental improvements to the Galp’s existing loyalty tool and an innovative paradigm change of the approach to loyalty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chapter presents a theoretical proposal of three analytical models of Adult Learning and Education (ALE) policies. Some analytical categories and the corresponding dimensions are organised according to the ALE rationale which is typical of each social policy model. Historical, cultural and educational features are mentioned in connexion with the different policy models and its interpretative capacity to making sense of policies and practices implemented in Germany, Portugal and Sweden. !e analysis includes the states of the art and the official representations of ALE produced by the respective national authorities through national reports which were presented to CONFINTEA VI (2009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Tecnologias e Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data Mining, Learning from data, graphical models, possibility theory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two claims pervade the literature on the political economy of market reforms: that economic crises cause reforms; and that crises matter because they bring into question the validity of the economic model held to be responsible for them. Economic crises are said to spur a process of learning that is conducive to the abandonment of failing models and to the adoption of successful models. But although these claims have become the conventional wisdom, they have been hardly tested empirically due to the lack of agreement on what constitutes a crisis and to difficulties in measuring learning from them. I propose a model of rational learning from experience and apply it to the decision to open the economy. Using data from 1964 through 1990, I show that learning from the 1982 debt crisis was relevant to the first wave of adoption of an export promotion strategy, but learning was conditional on the high variability of economic outcomes in countries that opened up to trade. Learning was also symbolic in that the sheer number of other countries that liberalized was a more important driver of others’ decisions to follow suit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expectations about the future are central for determination of current macroeconomic outcomes and the formulation of monetary policy. Recent literature has explored ways for supplementing the benchmark of rational expectations with explicit models of expectations formation that rely on econometric learning. Some apparently natural policy rules turn out to imply expectational instability of private agents’ learning. We use the standard New Keynesian model to illustrate this problem and survey the key results about interest-rate rules that deliver both uniqueness and stability of equilibrium under econometric learning. We then consider some practical concerns such as measurement errors in private expectations, observability of variables and learning of structural parameters required for policy. We also discuss some recent applications including policy design under perpetual learning, estimated models with learning, recurrent hyperinflations, and macroeconomic policy to combat liquidity traps and deflation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agents have two forecasting models, one consistent with the unique rational expectations equilibrium, another that assumes a time-varying parameter structure. When agents use Bayesian updating to choose between models in a self-referential system, we find that learning dynamics lead to selection of one of the two models. However, there are parameter regions for which the non-rational forecasting model is selected in the long-run. A key structural parameter governing outcomes measures the degree of expectations feedback in Muth's model of price determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies optimal monetary policy in a framework that explicitly accounts for policymakers' uncertainty about the channels of transmission of oil prices into the economy. More specfically, I examine the robust response to the real price of oil that US monetary authorities would have been recommended to implement in the period 1970 2009; had they used the approach proposed by Cogley and Sargent (2005b) to incorporate model uncertainty and learning into policy decisions. In this context, I investigate the extent to which regulator' changing beliefs over different models of the economy play a role in the policy selection process. The main conclusion of this work is that, in the specific environment under analysis, one of the underlying models dominates the optimal interest rate response to oil prices. This result persists even when alternative assumptions on the model's priors change the pattern of the relative posterior probabilities, and can thus be attributed to the presence of model uncertainty itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Facultat de Ciències de la Salut i de la Vida ha utilitzat des de 2004 la metodologia d'aprenentatge basat en problemes (en endavant ABP) com a mètode docent en els seus estudis de Biologia. En aquest període hem après algunes de les claus de l'aplicació del mètode en els nostres estudis. En primer lloc, cal disposar d'elements formatius que afavoreixin la formació dels tutors que participin en el projecte. Per assolir aquest objectiu hem dissenyat un portal on els nostres professors poden disposar de materials útils per a la seva activitat, així com de documents que permetin entendre millor el que suposa l'ABP. En segon lloc, el projecte tenia l'objectiu de dissenyar i avaluar activitats que permetessin integrar les pràctiques de laboratori en la lògica de la resolució de problemes pròpia de l'ABP. En aquest sentit vam dissenyar dues activitats en el tercer curs de la llicenciatura que anomenaren aprenentatge basat en el laboratori (ABL). Per aquest motiu es van dissenyar problemes que tinguessin una primera part de resolució a l'aula en grup de tutoria i una segona que obligués els estudiants a realitzar experiments de laboratori dirigits a entendre i resoldre les qüestions plantejades al grup de tutoria. L'ABL-1 fou un projecte de biologia cel·lular i destinat a aprofundir en els mecanismes implicats en els fenòmens de diferenciació dels miòcits. L'ABL-2 era un projecte conjunt dels professors de Fisiologia vegetal, Bioestadística i Microbiologia. En aquest cas es desitjava que els estudiants plantegessin la resolució a un problema que suposava la manipulació genètica de cèl·lules vegetals per fer possible que produïssin una substància específica, l'escopolamina. Finalment els estudiants havien d'escriure un article original com a projecte final de cada ABL. Els resultats dels dos anys d'experimentació han esta altament satisfactoris, d'acord amb les enquestes completades per alumnes i professors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.