969 resultados para Late-latency auditory evoked potentials
Resumo:
OBJETIVOS: descrever os achados do exame de potencial evocado auditivo de tronco encefálico (PEATE) de crianças de um programa de triagem auditiva neonatal e analisar a diferença de gênero e a interferência da idade nas medidas da latência das ondas do PEATE. MÉTODOS: para tal foram avaliadas 41 crianças com idade entre um a nove meses, referenciadas de um Programa de Triagem Municipal ao Centro de Estudos de Educação e Saúde (CEES) na cidade de Marília, SP no ano de 2010. RESULTADOS: foi observado resultado normal em 31 (75,6%) e alterado em 10 (24,4%) pacientes. Nesses últimos foram observadas alterações principalmente do tipo condutiva unilateral e bilateral. Observou-se também que a medida que a idade aumenta a latência das ondas diminui numa correlação inversa. CONCLUSÕES: o diagnóstico das crianças deste Programa de Triagem Auditiva Neonatal foi precoce. Os resultados do PEATE poderão servir de referência para outros estudos deste âmbito. O PEATE nesta população permite um melhor direcionamento da conduta e intervenção e aconselhamento específico aos familiares.
Resumo:
A Síndrome da Apneia Obstrutiva do Sono (SAOS) diminui as capacidades da atenção, memória e concentração, fatores relacionados com a cognição. A análise dos parâmetros do P300 auditivo permitiria inferir disfunção cognitiva. OBJETIVO: Comparar os dados da polissonografia e do P300 auditivo em adultos, roncopatas primários com portadores de SAOS. CASUÍSTICA E MÉTODO: Estudo prospectivo em roncopatas primários (N=12) e em portadores de SAOS (N=54), submetidos à polissonografia definidos pelo índice de apneia e hipopneia (IAH). As variáveis da polissonografia e as do P300 foram comparadas, pelos testes T de Student, exato de Fisher, regressão logística e análise de correlação com nível de significância de 5%. RESULTADOS: O IAH apresentou correlação inversa com a oximetria em ambos os grupos. A prevalência do P300 foi menor no G.SAOS (teste exato de Fisher, p=0,027). A idade dos pacientes não influenciou a prevalência do P300 (análise de regressão; p=0,232). A amplitude do P300 foi menor do G.SAOS (teste T de Student; p=0,003) a latência do P300 foi semelhante em ambos os grupos (teste T de Student; p=0,89). CONCLUSÃO: A redução da amplitude do P300 nos portadores de SAOS sugere disfunção cognitiva induzida por diminuição da memória auditiva.
Resumo:
CONTEXTO E OBJETIVO: Crianças e adolescentes que vivem em situação de vulnerabilidade social apresentam uma série de problemas de saúde. Apesar disso, ainda é controversa a afirmação sobre a existência de alterações cognitivas e/ou sensoriais. O objetivo deste estudo foi investigar aspectos relacionados ao processamento auditivo, através da aplicação de testes de potencial evocado auditivo de tronco encefálico (PEATE) e avaliação comportamental do processamento auditivo em crianças em situação de rua, comparando a um grupo controle. TIPO DE ESTUDO E LOCAL: Estudo transversal no Laboratório de Processamento Auditivo, Faculdade de Medicina da Universidade de São Paulo. MÉTODOS: Os testes de processamento auditivo foram aplicados em um grupo de 27 indivíduos, subdivididos em grupos de 11 crianças (7 a 10 anos) e 16 adolescentes (11 a 16 anos) de ambos os sexos, em situação de vulnerabilidade social, e comparado a um grupo controle, formado por 21 crianças, subdivididas em grupos de 10 crianças e 11 adolescentes, pareados por idade, sem queixas. Também se aplicou os PEATE para investigação da integridade da via auditiva. RESULTADOS: Para ambas as faixas etárias, foram encontradas diferenças significantes entre grupos estudo e controle para a maioria dos testes aplicados, sendo que o grupo estudo apresentou desempenho estatisticamente pior do que o controle para todos os testes, exceto para o teste pediatric speech intelligibility. Apenas uma criança apresentou resultado alterado para os PEATE. CONCLUSÕES: Os resultados demonstraram pior desempenho do grupo estudo (crianças e adolescentes) para os testes comportamentais de processamento auditivo, apesar de estes apresentarem integridade da via auditiva em nível de tronco encefálico, demonstrada pela normalidade nos resultados do PEATE.
Resumo:
The Auditory Evoked Middle Latency Response is one of the most promising objective tests in audiology and in revealing brain dysfunction and neuro-audiologic findings. The main advantages of its clinical use are precision and objectivity in evaluating children. This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male), both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.
Resumo:
Introduction Literature data are not conclusive as to the influence of neonatal complications in the maturational process of the auditory system observed by auditory brainstem response (ABR) in infants at term and preterm. Objectives Check the real influence of the neonatal complications in infants by the sequential auditory evaluation. Methods Historical cohort study in a tertiary referral center. A total of 114 neonates met inclusion criteria: treatment at the Universal Neonatal Hearing Screening Program of the local hospital; at least one risk indicator for hearing loss; presence in both evaluations (the first one after hospital discharge from the neonatal unit and the second one at 6 months old); all latencies in ABR and transient otoacoustic emissions present in both ears. Results The complications that most influenced the ABR findings were Apgar scores less than 6 at 5 minutes, gestational age, intensive care unit stay, peri-intraventricular hemorrhage, and mechanical ventilation. Conclusion Sequential auditory evaluation is necessary in premature and term newborns with risk indicators for hearing loss to correctly identify injuries in the auditory pathway.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Transient visual evoked cortical potentials (VECP) were recorded from the scalp of healthy normal trichromats (n = 12). VECPs were elicited by onset/offset presentation of patterned stimuli of two kinds: isochromatic luminance-modulated, and equiluminant red-green modulated, sine wave gratings. The amplitude and latency of the major onset components of the onset/offset VECP were measured and plotted as a function of the logarithm of pooled cone contrast. The early onset components, achromatic C1 and chromatic N1, increase linearly with log contrast, but N1 has a higher contrast gain than C1. The late onset components, achromatic C2 and chromatic N2, have similar contrast gain, and similar response as a function of contrast level: both increase in the low-to-medium range of contrasts and saturate at high contrast levels. In the range of pooled cone contrast tested, C1 and N1 show similar latencies, whilst C2 shows shorter latencies than N2. We suggest that C1 and N1 are generated by the same visual mechanism with high red-green contrast gain and low luminance contrast gain, whilst C2 and N2 are generated by different visual mechanisms.
Resumo:
The auditory brainstem response (ABR) is a test widely used to assess the integrity of the brain stem. Although it is considered to be an auditory-evoked potential that is influenced by the physical characteristics of the stimulus, such as rate, polarity and type of stimulus, it may also be influenced by the change in several parameters. The use of anesthetics may adversely influence the value of the ABR wave latency. One of the anesthetics used for e ABR assessment, especially in animal research, is the ketamine/xylazine combination. Our objective was to determine the influence of the ketamine/xylazine anesthetic on the ABR latency values in adult gerbils. The ABRs of 12 adult gerbils injected with the anesthetic were collected on three consecutive days, or a total of six collections, namely: pre-collection and A, B, C, D, and E collections. Before each collection the gerbil was injected with a dose of ketamine (100 mg/kg)/xylazine (4 mg/kg). For the capture of the ABR, 2000 click stimuli were used with rarefaction polarity and 13 stimuli per second, 80 dBnHL intensity and in-ear phones. A statistically significant difference was observed in the latency of the V wave in the ABR of gerbils in the C and D collections compared to the pre-, A and E collections, and no difference was observed between the pre-, A, B, and E collections. We conclude that the use of ketamine/xylazine increases the latency of the V wave of the ABR after several doses injected into adult gerbils; thus clinicians should consider the use of this substance in the assessment of ABR.
Resumo:
CONTEXT AND OBJECTIVE: Children and adolescents who live in situations of social vulnerability present a series of health problems. Nonetheless, affirmations that sensory and cognitive abnormalities are present are a matter of controversy. The aim of this study was to investigate aspects to auditory processing, through applying the brainstem auditory evoked potential (BAEP) and behavioral auditory processing tests to children living on the streets, and comparison with a control group. DESIGN AND SETTING: Cross-sectional study in the Laboratory of Auditory Processing, School of Medicine, Universidade de São Paulo. METHODS: The auditory processing tests were applied to a group of 27 individuals, subdivided into 11 children (7 to 10 years old) and 16 adolescents (11 to 16 years old), of both sexes, in situations of social vulnerability, compared with an age-matched control group of 10 children and 11 adolescents without complaints. The BAEP test was also applied to investigate the integrity of the auditory pathway. RESULTS: For both children and adolescents, there were significant differences between the study and control groups in most of the tests applied, with significantly worse performance in the study group, except in the pediatric speech intelligibility test. Only one child had an abnormal result in the BAEP test. CONCLUSIONS: The results showed that the study group (children and adolescents) presented poor performance in the behavioral auditory processing tests, despite their unaltered auditory brainstem pathways, as shown by their normal results in the BAEP test.
Resumo:
We assessed the effects of hypoxic-ischemic encephalopathy (HIE) and whole-body hypothermia therapy on auditory brain stem evoked responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We performed serial assessments of ABRs and DPOAEs in newborns with moderate or severe HIE, randomized to hypothermia ( N = 4) or usual care ( N = 5). Participants were five boys and four girls with mean gestational age (standard deviation) of 38.9 (1.8) weeks. During the first week of life, peripheral auditory function, as measured by the DPOAEs, was disrupted in all nine subjects. ABRs were delayed but central transmission was intact, suggesting a peripheral rather than a central neural insult. By 3 weeks of age, peripheral auditory function normalized. Hypothermia temporarily prolonged the ABR, more so for waves generated higher in the brain stem but the effects reversed quickly on rewarming. Neonatal audiometric testing is feasible, noninvasive, and capable of enhancing our understanding of the effects of HIE and hypothermia on auditory function.
Resumo:
Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.
Resumo:
The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.
Resumo:
The practicality of recording visual evoked magnetic fields in 100 subjects 15-87 yr of age using a single channel d.c. SQUID second order gradiometer in an unshielded environment was investigated. The pattern reversal response showed a major positive component between 90 and 120 msec (P100M) while the response to flash produced a major positive component between 90 and 140 msec (P2M). Latency norms of the P100M were more variable than the corresponding P100 and P2 visual evoked potentials. The latency of the P100M may show a steep increase with age in most subjects after about 55 yr whereas only a small trend of latency with age was detected for the flash P2M.
Resumo:
The practicality or recording normative data for two components of the visually evoked magnetic response (VEMR) (P100M and P2M) using a single channel dc-SQUID second order gradiometer in an unshielded environment was investigated. Latency norms of the P100M and P2M were more variable than the corresponding electrical P100 and P2 visual evoked potentials. Methods of improving the normative data for clinical use were discussed.
Resumo:
In an endeavour to provide further insight into the maturation of the cortical visual system in human infants, chromatic transient pattern reversal visual evoked potentials to red/green stimuli, were studied in a group of normal full term infants between the ages of 1 and 14 weeks post term in both cross sectional and longitudinal studies. In order to produce stimuli in which luminance cues had been eliminated with an aim to eliciting a chromatic response, preliminary studies of isoluminance determination in adults and infants were undertaken using behavioural and electrophysiological techniques. The results showed close similarity between the isoluminant ratio for adults and infants and all values were close to photometric isoluminance. Pattern reversal VEPs were recorded to stimuli of a range of red/green luminance ratios and an achromatic checkerboard. No transient VEP could be elicited with an isoluminant chromatic pattern reversal stimulus from any infant less than 7 weeks post term and similarly, all infants more than 7 weeks post term showed clear chromatic VEPs. The chromatic response first appeared at that age as a major positive component (P1) of long latency. This was delayed and reduced in comparison to the achromatic response. As the infant grew older, the latency of the P1 component decreased with the appearance of N1 and N by the 10th week post term. This finding was consistent throughout all infants assessed. In a behavioural study, no infant less than 7 weeks post term demonstrated clear discrimination of the chromatic stimulus, while those infants older than 7 weeks could do so. These findings are reviewed with respect to current neural models of visual development.