971 resultados para Laser Doppler vibration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed F&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P<0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary nitrate, from beetroot, has been reported to lower blood pressure (BP) by the sequential reduction of nitrate to nitrite and further to NO in the circulation. However, the impact of beetroot on microvascular vasodilation and arterial stiffness is unknown. In addition, beetroot is consumed by only 4.5% of the UK population, whereas bread is a staple component of the diet. Thus, we investigated the acute effects of beetroot bread (BB) on microvascular vasodilation, arterial stiffness, and BP in healthy participants. Twenty-three healthy men received 200 g bread containing 100 g beetroot (1.1 mmol nitrate) or 200 g control white bread (CB; 0 g beetroot, 0.01 mmol nitrate) in an acute, randomized, open-label, controlled crossover trial. The primary outcome was postprandial microvascular vasodilation measured by laser Doppler iontophoresis and the secondary outcomes were arterial stiffness measured by Pulse Wave Analysis and Velocity and ambulatory BP measured at regular intervals for a total period of 6 h. Plasma nitrate and nitrite were measured at regular intervals for a total period of 7 h. The incremental area under the curve (0-6 h after ingestion of bread) for endothelium-independent vasodilation was greater (P = 0.017) and lower for diastolic BP (DBP; P = 0.032) but not systolic (P = 0.99) BP after BB compared with CB. These effects occurred in conjunction with increases in plasma and urinary nitrate (P < 0.0001) and nitrite (P < 0.001). BB acutely increased endothelium-independent vasodilation and decreased DBP. Therefore, enriching bread with beetroot may be a suitable vehicle to increase intakes of cardioprotective beetroot in the diet and may provide new therapeutic perspectives in the management of hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a mathematical model linking changes in cerebral blood flow, blood volume and the blood oxygenation state in response to stimulation. The model has three compartments to take into account the fact that the cerebral blood flow and volume as measured concurrently using laser Doppler flowmetry and optical imaging spectroscopy have contributions from the arterial, capillary as well as the venous compartments of the vasculature. It is an extension to previous one-compartment hemodynamic models which assume that the measured blood volume changes are from the venous compartment only. An important assumption of the model is that the tissue oxygen concentration is a time varying state variable of the system and is driven by the changes in metabolic demand resulting from changes in neural activity. The model takes into account the pre-capillary oxygen diffusion by flexibly allowing the saturation of the arterial compartment to be less than unity. Simulations are used to explore the sensitivity of the model and to optimise the parameters for experimental data. We conclude that the three-compartment model was better than the one-compartment model at capturing the hemodynamics of the response to changes in neural activation following stimulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies have shown that the haemodynamic responses to brief (<2 secs) stimuli can be well characterised as a linear convolution of neural activity with a suitable haemodynamic impulse response. In this paper, we show that the linear convolution model cannot predict measurements of blood flow responses to stimuli of longer duration (>2 secs), regardless of the impulse response function chosen. Modifying the linear convolution scheme to a nonlinear convolution scheme was found to provide a good prediction of the observed data. Whereas several studies have found a nonlinear coupling between stimulus input and blood flow responses, the current modelling scheme uses neural activity as an input, and thus implies nonlinearity in the coupling between neural activity and blood flow responses. Neural activity was assessed by current source density analysis of depth-resolved evoked field potentials, while blood flow responses were measured using laser Doppler flowmetry. All measurements were made in rat whisker barrel cortex after electrical stimulation of the whisker pad for 1 to 16 secs at 5 Hz and 1.2 mA (individual pulse width 0.3 ms).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (less than or equal to2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single "neural event" from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Observed associations between increased fruit and vegetable (F&V) consumption, particularly those F&Vs that are rich in flavonoids, and vascular health improvements require confirmation in adequately powered randomized controlled trials. OBJECTIVE: This study was designed to measure the dose-response relation between high-flavonoid (HF), low-flavonoid (LF), and habitual F&V intakes and vascular function and other cardiovascular disease (CVD) risk indicators. DESIGN: A single-blind, dose-dependent, parallel randomized controlled dietary intervention study was conducted. Male and female low-F&V consumers who had a ≥1.5-fold increased risk of CVD (n = 174) were randomly assigned to receive an HF F&V, an LF F&V, or a habitual diet, with HF and LF F&V amounts sequentially increasing by 2, 4, and 6 (+2, +4, and +6) portions/d every 6 wk over habitual intakes. Microvascular reactivity (laser Doppler imaging with iontophoresis), arterial stiffness [pulse wave velocity, pulse wave analysis (PWA)], 24-h ambulatory blood pressure, and biomarkers of nitric oxide (NO), vascular function, and inflammation were determined at baseline and at 6, 12, and 18 wk. RESULTS: In men, the HF F&V diet increased endothelium-dependent microvascular reactivity (P = 0.017) with +2 portions/d (at 6 wk) and reduced C-reactive protein (P = 0.001), E-selectin (P = 0.0005), and vascular cell adhesion molecule (P = 0.0468) with +4 portions/d (at 12 wk). HF F&Vs increased plasma NO (P = 0.0243) with +4 portions/d (at 12 wk) in the group as a whole. An increase in F&Vs, regardless of flavonoid content in the groups as a whole, mitigated increases in vascular stiffness measured by PWA (P = 0.0065) and reductions in NO (P = 0.0299) in the control group. CONCLUSION: These data support recommendations to increase F&V intake to ≥6 portions daily, with additional benefit from F&Vs that are rich in flavonoids, particularly in men with an increased risk of CVD. This trial was registered at www.controlled-trials.com as ISRCTN47748735.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Although a large number of randomized controlled trials (RCTs) have examined the impact of the n-3 (ω-3) fatty acids EPA (20:5n-3) and DHA (22:6n-3) on blood pressure and vascular function, the majority have used doses of EPA+DHA of > 3 g per d,which are unlikely to be achieved by diet manipulation. Objective: The objective was to examine, using a retrospective analysis from a multi-center RCT, the impact of recommended, dietary achievable EPA+DHA intakes on systolic and diastolic blood pressure and microvascular function in UK adults. Design: Healthy men and women (n = 312) completed a double-blind, placebo-controlled RCT consuming control oil, or fish oil providing 0.7 g or 1.8 g EPA+DHA per d in random order each for 8 wk. Fasting blood pressure and microvascular function (using Laser Doppler Iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the eNOS rs1799983 variant. Results: No impact of n-3 fatty acid treatment or any treatment * eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P=0.046) fish oil-induced reduction (mean 5 mmHg) in systolic blood pressure specifically in those with isolated systolic hypertension (n=31). No dose response was observed. Conclusions: These findings indicate that, in those with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g bring about clinically meaningful blood pressure reductions which, at a population level, would be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT where participants are prospectively recruited on the basis of blood pressure status is required to draw definite conclusions. The Journal of Nutrition NUTRITION/2015/220475 Version 4

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJETIVO: Avaliar as características antropométricas, a morbidade e mortalidade de recém-nascidos (RN) prematuros nascidos vivos de mães hipertensas em função da presença ou não de diástole zero (DZ) ou reversa (DR) na doplervelocimetria arterial umbilical. MÉTODOS: Estudo prospectivo, envolvendo RN prematuros nascidos vivos de gestantes hipertensas, com idade gestacional entre 25 e 33 semanas, submetidas à doplervelocimetria da artéria umbilical nos 5 dias que antecederam o parto, realizado no Hospital do Distrito Federal, entre 1º de novembro de 2009 e 31 de outubro de 2010. Os RN foram estratificados em dois grupos, conforme o resultado da doplervelocimetria da artéria umbilical: Gdz/dr=presença de diástole zero (DZ) ou diástole reversa (DR) e Gn=doplervelocimetria normal. Medidas antropométricas ao nascimento, morbidades e mortalidade neonatal foram comparadas entre os dois grupos. RESULTADOS: Foram incluídos 92 RN, assim distribuídos: Gdz/dr=52 RN e Gn=40 RN. No Gdz/dr a incidência de RN pequenos para idade gestacional foi significativamente maior, com risco relativo de 2,5 (IC95% 1,7‒3,7). No grupo Gdz/dr os RN permaneceram mais tempo em ventilação mecânica mediana 2 (0‒28) e no Gn mediana 0,5 (0‒25), p=0,03. A necessidade de oxigênio aos 28 dias de vida foi maior no Gdz/dr do que no Gn (33 versus10%; p=0,01). A mortalidade neonatal foi maior em Gdz/dr do que em Gn (36 versus 10%; p=0,03; com risco relativo de 1,6; IC95% 1,2 - 2,2). Nessa amostra a regressão logística mostrou que a cada 100 gramas a menos de peso ao nascer no Gdz/dr a chance de óbito aumentou 6,7 vezes (IC95% 2,0 - 11,3; p<0,01). CONCLUSÃO: em RN prematuros de mães hipertensas com alteração na doplervelocimetria da artéria umbilical a restrição do crescimento intrauterino é frequente e o prognóstico neonatal pior, sendo elevado o risco de óbito relacionado ao peso ao nascimento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application and development of obstetric Dopplervelocimetry provide a basis for the investigation of placental insuf ciency and demonstrate the dynamic behavior of fetal circulation during hypoxia. In clinical practice, assessing hemodynamics in three vascular regions involved in pregnancy, namely the uterine, umbilical and middle cerebral arteries, has become routine. Roughly, the cerebral artery expresses the balance between uterine artery oxygen supply and umbilical artery oxygen uptake. Currently, when such balance is unfavorable, the fetal cardiac reserve is investigated by assessing the venous duct. However, determining and interpreting vascular resistance indexes is not an easy task. The starting point is to know the physiopathology of placental insuf ciency and fetal circulatory adaptation through which Doppler con rmed its role in the assessment of fetal well-being.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diese Arbeit beschreibt eine wesentliche Weiterentwicklung des Titan:Saphir-Lasersystems der Arbeitsgruppe LARISSA am Institut für Physik der Johannes Gutenberg-Universität Mainz und dessen Anwendung im Bereich der Resonanzionisationsspektroskopie. Die Entwicklungsarbeiten am Lasersystem umfassten drei Aspekte: die Erhöhung der Ausgangsleistung der vorhandenen Titan:Saphir-Laser um einen Faktor zwei, um damit für den vorgesehenen Einsatz an resonanten Laserionenquellen an ISOL-Einrichtungen optimale Voraussetzungen zu schaffen. Des Weiteren wurden zwei spezielle angepasste Titan:Saphir-Laser entwickelt: Das Lasersystem wurde damit um einen von 700 nm - 950 nm kontinuierlich abstimmbaren Titan:Saphir-Laser sowie einen geseedeten Titan:Saphir-Laser mit einer Linienbreite von nur 20 MHz (im Vergleich zu 3 GHz der konventionellen Laser) erweitert. Die Leistungsfähigkeit des neuen Lasersystems wurde durch Resonanzionisationsspektroskopie hochangeregter atomarer Zustände in Gold und Technetium demonstriert. Aus den gemessenen Energielagen konnte über die Rydberg-Ritz-Formel das Ionisationspotential von Gold bestätigt werden und das von Technetium erstmals mit hoher Präzision bestimmt werden. Mit dem geseedeten Titan:Saphir-Laser wurde dopplerfreie Zwei-Photonen-Spektroskopie innerhalb eines heißen Ofens demonstriert. Bei spektroskopischen Untersuchungen mit dieser Methode an Siliziumisotopen konnte sowohl die Hyperfeinstruktur als auch die Isotopieverschiebung bei einer Breite der Resonanzen von etwa 90 MHz klar aufgelöst werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende klinische Studie hatte zum Ziel, die mikrovaskuläre Endothelfunktion retinaler und dermaler Gefäße von Insulinresistenten und Typ 2- Diabetikern ohne Zeichen einer diabetischen Retinopathie mit einer gesunden insulinsensitiven nicht-diabetischen Kontrollgruppe hinsichtlich früher morphologischer und funktioneller Veränderungen zu vergleichen.rnrnMethode:rnEs wurden 54 Patienten ohne Nachweis einer diabetischen Retinopathie eingeschlossen und in 3 Gruppen entsprechend ihren metabolischen Ergebnissen eingeteilt: 1.) Gruppe K (Kontrollgruppe) setzte sich aus gesunden, nicht-diabetischen, insulin-sensitiven rn(HOMA ≤ 2) Probanden mit einem BMI ≤ 28 kg/m2 zusammen; 2.) Gruppe IR bestand aus den nicht-diabetischen, insulin-resistenten (HOMAs > 2), übergewichtigen Patienten mit einem BMI > 28 kg/m2 und 3.) Gruppe DM war definiert als Patienten mit einem manifesten Typ 2-Diabetes mellitus.rnrnDie mikrovaskuläre Funktion der Retina wurde mittels eines Laserdoppler-Verfahrens (Heidelberg Retina Flowmeter) untersucht und hierbei der retinale Blutfluss und das Verhältnis der Gefäßwand zum Lumen (WLR, wall-to-lumen-ratio) basal und nach Flickerlicht-Stimulation (10 Hz, Photo Stimulator 750) gemessen. Letzterer gilt als Marker für vaskuläre Schädigung. rnZusätzlich wurde die dermale Mikrozirkulation (Blutfluss, O2-Sättigung) als weiterer Faktor der mikrovaskulären Endothelfunktion in den 3 Studiengruppen untersucht und miteinander verglichen.rnErgebnisse:rnEs zeigte sich kein signifikanter Unterschied des retinalen Blutflusses zwischen den 3 Gruppen weder basal noch nach Flickerlicht-Stimulation. Es zeigte sich keine Korrelation zwischen der mikrovaskulären Funktion der Haut und der Retina. rnDie arterielle WLR zeigte nur geringe Unterscheide zwischen den 3 Gruppen.rnrnMit zunehmendem Grad der Insulinresistenz wurde jedoch eine Reduktion des basalen als auch des flickerlicht-stimulierten retinalen Blutflusses deutlich, dabei zeigte sich unerwarteter Weise eine Abnahme der WLR.rnrnDer (prä-ischämische) muskuläre Blutfluss war in der IR-Gruppe signifikant geringer als in der K-Gruppe. Auch war die postischämische dermale O2-Sättigung in der DM und IR-Gruppe signifikant niedriger im Vergleich zur K-Gruppe. Jedoch war die postischämische hyperämische dermale Reaktion in der IR und DM-Gruppe nur geringgradig weniger als in der K-Gruppe. rnrnSchlussfolgerung:rnEine Korrelation zwischen der Entwicklung der Insulinresistenz und retinaler sowie dermaler mikrovaskulärer endothelialer Funktion wurde bei der Studie deutlich. Mithilfe des neuen Verfahrens der Laser Scanner Flowmeter zur Messung der retinalen Endothelfunktion lassen sich sehr frühe morphologische Veränderungen des mikrovaskulären Blutflusses erfassen. rnDie fehlende Korrelation zwischen retinaler und dermaler mikrovaskulärer Funktion als auch die geringen Unterschiede der WLR sollte Gegenstand weiterer Studien seinrn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fine powders commonly have poor flowability and dispersibility due to interparticle adhesion that leads to formation of agglomerates. Knowing about adhesion in particle collectives is indispensable to gain a deeper fundamental understanding of particle behavior in powders. Especially in pharmaceutical industry a control of adhesion forces in powders is mandatory to improve the performance of inhalation products. Typically the size of inhalable particles is in the range of 1 - 5 µm. In this thesis, a new method was developed to measure adhesion forces of particles as an alternative to the established colloidal probe and centrifuge technique, which are both experimentally demanding, time consuming and of limited practical applicability. The new method is based on detachment of individual particles from a surface due to their inertia. The required acceleration in the order of 500 000 g is provided by a Hopkinson bar shock excitation system and measured via laser vibrometry. Particle detachment events are detected on-line by optical video microscopy. Subsequent automated data evaluation allows obtaining a statistical distribution of particle adhesion forces. To validate the new method, adhesion forces for ensembles of single polystyrene and silica microspheres on a polystyrene coated steel surface were measured under ambient conditions. It was possible to investigate more than 150 individual particles in one experiment and obtain adhesion values of particles in a diameter range of 3 - 13 µm. This enables a statistical evaluation while measuring effort and time are considerably lower compared to the established techniques. Measured adhesion forces of smaller particles agreed well with values from colloidal probe measurements and theoretical predictions. However, for the larger particles a stronger increase of adhesion with diameter was observed. This discrepancy might be induced by surface roughness and heterogeneity that influence small and large particles differently. By measuring adhesion forces of corrugated dextran particles with sizes down to 2 µm it was demonstrated that the Hopkinson bar method can be used to characterize more complex sample systems as well. Thus, the new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for inhalation.