916 resultados para Land-cover Change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in agricultural practices of semi-natural mountain grasslands are expected to modify plant community structure and shift dominance patterns. Using vegetation surveys of 11 sites in semi-natural grasslands of the Swiss Jura and Swiss and French Alps, we determined the relative contribution of dominant, subordinate and transient plant species in grazed and abandoned communities and observed their changes along a gradient of productivity and in response to abandonment of pasturing. The results confirm the humpbacked diversity–productivity relationship in semi-natural grassland, which is due to the increase of subordinate species number at intermediate productivity levels. Grazed communities, at the lower or higher end of the species diversity gradient, suffered higher species loss after grazing abandonment. Species loss after abandonment of pasturing was mainly due to a higher reduction in the number of subordinate species, as a consequence of the increasing proportion of dominant species. When plant biodiversity maintenance is the aim, our results have direct implications for the way grasslands should be managed. Indeed, while intensification and abandonment have been accelerated since few decades, our findings in this multi-site analysis confirm the importance of maintaining intermediate levels of pasturing to preserve biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in land cover alter the water balance components of a catchment, due to strong interactions between soils, vegetation and the atmosphere. Therefore, hydrological climate impact studies should also integrate scenarios of associated land cover change. To reflect two severe climate-induced changes in land cover, we applied scenarios of glacier retreat and forest cover increase that were derived from the temperature signals of the climate scenarios used in this study. The climate scenarios were derived from ten regional climate models from the ENSEMBLES project. Their respective temperature and precipitation changes between the scenario period (2074–2095) and the control period (1984–2005) were used to run a hydrological model. The relative importance of each of the three types of scenarios (climate, glacier, forest) was assessed through an analysis of variance (ANOVA). Altogether, 15 mountainous catchments in Switzerland were analysed, exhibiting different degrees of glaciation during the control period (0–51%) and different degrees of forest cover increase under scenarios of change (12–55% of the catchment area). The results show that even an extreme change in forest cover is negligible with respect to changes in runoff, but it is crucial as soon as changes in evaporation or soil moisture are concerned. For the latter two variables, the relative impact of forest change is proportional to the magnitude of its change. For changes that concern 35% of the catchment area or more, the effect of forest change on summer evapotranspiration is equally or even more important than the climate signal. For catchments with a glaciation of 10% or more in the control period, the glacier retreat significantly determines summer and annual runoff. The most important source of uncertainty in this study, though, is the climate scenario and it is highly recommended to apply an ensemble of climate scenarios in the impact studies. The results presented here are valid for the climatic region they were tested for, i.e., a humid, mid-latitude mountainous environment. They might be different for regions where the evaporation is a major component of the water balance, for example. Nevertheless, a hydrological climate-impact study that assesses the additional impacts of forest and glacier change is new so far and provides insight into the question whether or not it is necessary to account for land cover changes as part of climate change impacts on hydrological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding of Earth's carbon climate system depends critically upon interactions between rising atmospheric CO2, changing land use, and nitrogen limitation on vegetation growth. Using a global land model, we show how these factors interact locally to generate the global land carbon sink over the past 200 years. Nitrogen constraints were alleviated by N2 fixation in the tropics and by atmospheric nitrogen deposition in extratropical regions. Nonlinear interactions between land use change and land carbon and nitrogen cycling originated from three major mechanisms: (i) a sink foregone that would have occurred without land use conversion; (ii) an accelerated response of secondary vegetation to CO2 and nitrogen, and (iii) a compounded clearance loss from deforestation. Over time, these nonlinear effects have become increasingly important and reduce the present-day net carbon sink by ~40% or 0.4 PgC yr−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land systems are increasingly influenced by distal connections: the externalities and unintended consequences of social and ecological processes which occur in distant locations, and the feedback mechanisms that lead to new institutional developments and governance arrangements. Economic globalization and urbanization accentuate these novel telecoupling relationships. The prevalence of telecoupling in land systems demands new approaches to research and analysis in land science. This chapter presents a working definition of a telecoupled system, emphasizing the role of governance and institutional change in telecoupled interactions. The social, institutional, and ecological processes and conditions through which telecoupling emerges are described. The analysis of these relationships in land science demands both integrative and diverse epistemological perspectives and methods. Such analyses require a focus on how the motivations and values of social actors relate to telecoupling processes, as well as on the mechanisms that produce unanticipated outcomes and feedback relationships among distal land systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon emissions from anthropogenic land use (LU) and land use change (LUC) are quantified with a Dynamic Global Vegetation Model for the past and the 21st century following Representative Concentration Pathways (RCPs). Wood harvesting and parallel abandonment and expansion of agricultural land in areas of shifting cultivation are explicitly simulated (gross LUC) based on the Land Use Harmonization (LUH) dataset and a proposed alternative method that relies on minimum input data and generically accounts for gross LUC. Cumulative global LUC emissions are 72 GtC by 1850 and 243 GtC by 2004 and 27–151 GtC for the next 95 yr following the different RCP scenarios. The alternative method reproduces results based on LUH data with full transition information within <0.1 GtC/yr over the last decades and bears potential for applications in combination with other LU scenarios. In the last decade, shifting cultivation and wood harvest within remaining forests including slash each contributed 19% to the mean annual emissions of 1.2 GtC/yr. These factors, in combination with amplification effects under elevated CO2, contribute substantially to future emissions from LUC in all RCPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic information systems allow the extraction and quantitative analysis of information from historical maps. The aims of this research were to examine the completeness of information represented on the 1881 Palestine Exploration Fund (PEF) map, to quantitatively reconstruct the landscape of nineteenth century Palestine and to explore whether spatial patterns in land cover/land use can be partially explained statistically by physical and human factors. Using historical aerial photos, we concluded that most of the major past landscape features were indeed shown on the PEF map, with an average overall correspondence of 53%. Forests and Mediterranean maquis were more abundant at distances greater than 2 km from towns and villages. Specific land cover/land-use types were associated with certain soil types, topographic regions and rainfall thresholds. In conclusion, the 1881 PEF map can serve as a reliable reference for understanding the land cover/land-use patterns of nineteenth century Palestine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications.