987 resultados para Land surface model
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.
Resumo:
The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈0.1–1km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model;WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km)in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme
Resumo:
[1] We present a model of the dust cycle that successfully predicts dust emissions as determined by land surface properties, monthly vegetation and snow cover, and 6-hourly surface wind speeds for the years 1982–1993. The model takes account of the role of dry lake beds as preferential source areas for dust emission. The occurrence of these preferential sources is determined by a water routing and storage model. The dust source scheme also explicitly takes into account the role of vegetation type as well as monthly vegetation cover. Dust transport is computed using assimilated winds for the years 1987–1990. Deposition of dust occurs through dry and wet deposition, where subcloud scavenging is calculated using assimilated precipitation fields. Comparison of simulated patterns of atmospheric dust loading with the Total Ozone Mapping Spectrometer satellite absorbing aerosol index shows that the model produces realistic results from daily to interannual timescales. The magnitude of dust deposition agrees well with sediment flux data from marine sites. Emission of submicron dust from preferential source areas are required for the computation of a realistic dust optical thickness. Sensitivity studies show that Asian dust source strengths are particularly sensitive to the seasonality of vegetation cover.
Resumo:
Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydro-graph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.
Resumo:
We utilize energy budget diagnostics from the Coupled Model Intercomparison Project phase 5 (CMIP5) to evaluate the models' climate forcing since preindustrial times employing an established regression technique. The climate forcing evaluated this way, termed the adjusted forcing (AF), includes a rapid adjustment term associated with cloud changes and other tropospheric and land-surface changes. We estimate a 2010 total anthropogenic and natural AF from CMIP5 models of 1.9 ± 0.9 W m−2 (5–95% range). The projected AF of the Representative Concentration Pathway simulations are lower than their expected radiative forcing (RF) in 2095 but agree well with efficacy weighted forcings from integrated assessment models. The smaller AF, compared to RF, is likely due to cloud adjustment. Multimodel time series of temperature change and AF from 1850 to 2100 have large intermodel spreads throughout the period. The intermodel spread of temperature change is principally driven by forcing differences in the present day and climate feedback differences in 2095, although forcing differences are still important for model spread at 2095. We find no significant relationship between the equilibrium climate sensitivity (ECS) of a model and its 2003 AF, in contrast to that found in older models where higher ECS models generally had less forcing. Given the large present-day model spread, there is no indication of any tendency by modelling groups to adjust their aerosol forcing in order to produce observed trends. Instead, some CMIP5 models have a relatively large positive forcing and overestimate the observed temperature change.
Resumo:
Future land use change (LUC) is an important component of the IPCC representative concentration pathways (RCPs), but in these scenarios' radiative forcing targets the climate impact of LUC only includes greenhouse gases. However, climate effects due to physical changes of the land surface can be as large. Here we show the critical importance of including non-carbon impacts of LUC when considering the RCPs. Using an ensemble of climate model simulations with and without LUC, we show that the net climate effect is very different from the carbon-only effect. Despite opposite signs of LUC, all the RCPs assessed here have a small net warming from LUC because of varying biogeophysical effects, and in RCP4.5 the warming is outside of the expected variability. The afforestation in RCP4.5 decreases surface albedo, making the net global temperature anomaly over land around five times larger than RCPs 2.6 and 8.5, for around twice the amount of LUC. Consequent changes to circulation in RCP4.5 in turn reduce Arctic sea ice cover. The small net positive temperature effect from LUC could make RCP4.5's universal carbon tax, which incentivizes retaining and growing forest, counter productive with respect to climate. However, there are spatial differences in the balance of impacts, and potential climate gains would need to be assessed against other environmental aims.
Resumo:
The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks.
Resumo:
Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial–interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies – that is, differences from the pre-industrial (PI) control climate – from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0–1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.
Resumo:
Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments.
Resumo:
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.
Resumo:
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.
Resumo:
In July and August 2010 floods of unprecedented impact afflicted Pakistan. The floods resulted from a series of intense multi-day precipitation events in July and early August. At the same time a series of blocking anticyclones dominated the upper-level flow over western Russia and breaking waves i.e. equatorward extrusions of stratospheric high potential vorticity (PV) air formed along the downstream flank of the blocks. Previous studies suggested that these extratropical upper-level breaking waves were crucial for instigating the precipitation events in Pakistan. Here a detailed analysis is provided of the extratropical forcing of the precipitation. Piecewise PV inversion is used to quantify the extratropical upper-level forcing associated with the wave breaking and trajectories are calculated to study the pathways and source regions of the moisture that precipitated over Pakistan. Limited-area model simulations are carried out to complement the Lagrangian analysis. The precipitation events over Pakistan resulted from a combination of favourable boundary conditions with strong extratropical and monsoonal forcing factors. Above-normal sea-surface temperatures in the Indian Ocean led to an elevated lower-tropospheric moisture content. Surface monsoonal depressions ensured the transport of moist air from the ocean towards northeastern Pakistan. Along this pathway the air parcel humidity increased substantially (60–90% of precipitated moisture) via evapotranspiration from the land surface. Extratropical breaking waves influenced the surface wind field substantially by enhancing the wind component directed towards the mountains which reinforced the precipitation.
Resumo:
This data set provides a high-resolution digital elevation model (DEM) of a thermokarst depression (~7 km²) on ice-complex deposits in the Arctic Lena Delta, Siberia. The DEM based on a geodetic field survey and was used for quantitative land surface analyses and detailed description of the thermokarst depression morphology. Detailed morphometrical analyses, volume calculations, and solar radiation modeling were performed and statistically analyzed by Ulrich et al. (2010) to investigate the asymmetrical thermokarst depression development and directed lake migration previously proposed by Morgenstern et al. (2008). Furthermore, the high-resolution DEM in combination with satellite data allowed detailed analyses of spatial and temporal landscape changes due to thermokarst development (Günther, 2009).