350 resultados para Laminates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of manufacturing process on the drop-weight impact damage in woven carbon/epoxy laminates was inspected by visual observation, dyepenetrant X-ray technique, and optical microscopy observation. The MTM56/ CF0300 woven quasi-isotropic laminates were fabricated by two processes: the autoclave and the Quickstep processes. QuickstepTM is a novel composite manufacturing process, which was designed for the out-of-autoclave production of high-quality composite parts at lower cost. It utilizes higher heat conduction of fluid other than gas to transfer heat to components, which results in much shorter cure cycles. The laminates cured by this fast heating process showed different impact failure modes from those cured by the conventional autoclave process. The residual indentation in the top side of the Quickstep-cured laminates had a bigger diameter, but a smaller depth at the same impact energy level. Dye-penetrant X-ray revealed more intense and connected impact damage regions in the autoclave-cured laminates. Optical micrography as a supplementary method showed less severe matrix damage in the quickstep-cured laminates indicating a more ductile property of the resin matrix cured at a faster heating rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal/polymer laminate is a new light weight sheet material suitable to replace conventional steel or aluminium sheet in future car designs. In this study the effect of material composition and process conditions on the forming behaviour of metal/polymer laminates in sheet metal forming was investigated by experimental, analytical and numerical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental buden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffere than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50% carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for the periodical assembly of laminates of forest-drawn carbon nanotube (CNT) sheets and polypyrrole (PPy) is described. The method produces composite films in which the volume fraction and orientation of CNTs can be controlled. Actuator stroke and strength is increased and work capacity per cycle doubled when nanotube orientation is perpendicular to the actuation direction. Most importantly, these PPy/CNT laminates have dramatically decreased creep during actuation, which has been a major barrier for the application of PPy actuators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voids are one of the most significant defects found within composites and have been demonstrated to reduce the performance of composite structures. The understanding of the impact of the size and distribution of voids on laminate properties is still limited because voids have proven difficult to deliberately control. This study aims to understand the mechanisms by which voids are generated within out-of-autoclave cured laminates. In this study, a process of prepreg conditioning was developed to control the level of voids within test laminates. Non-conditioned laminates highlighted signs of void growth (1.5%), while conditioned laminates showed consistently low levels of voids (<0.3%). Mass spectrometry indicated higher levels of aqueous and solvent volatiles within the non-conditioned prepreg. Finally, Mode II fracture testing revealed a 21% improvement in toughness for the non-voided laminates. A model on the effect of voids within the Mode II stress state has also been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of hygrothermal conditioning on mechanical properties of Carall laminates have been investigated by tensile and compression tests. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. The importance of temperature at the time of conditioning plays an important role in environmental degradation of such composite materials. In this work, the results show that for carbon fiber/epoxy composites tensile and compression values decrease after hygrothermal conditioning. However, the changes on mechanical properties of Carall are negligible, regardless the hygrothermal conditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)