995 resultados para Laminar-flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g.,rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperaturedependent viscosity. Results show that average RMS errors are ∼5%–7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck’09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ∼10°C–15°C effluent reach ∼5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2‐D flows where background objects have a small spatial scale, such as sand or gravel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on process intensification. Several significant problems and applications of this theme are covered. Process intensification is nowadays one of the most popular trends in chemical engineering and attempts have been made to develop a general, systematic methodology for intensification. This seems, however, to be very difficult, because intensified processes are often based on creativity and novel ideas. Monolith reactors and microreactors are successful examples of process intensification. They are usually multichannel devices in which a proper feed technique is important for creating even fluid distribution into the channels. Two different feed techniques were tested for monoliths. In the first technique a shower method was implemented by means of perforated plates. The second technique was a dispersion method using static mixers. Both techniques offered stable operation and uniform fluid distribution. The dispersion method enabled a wider operational range in terms of liquid superficial velocity. Using dispersion method, a volumetric gas-liquid mass transfer coefficient of 2 s-1 was reached. Flow patterns play a significant role in terms of the mixing performance of micromixers. Although the geometry of a T-mixer is simple, channel configurations and dimensions had a clear effect on mixing efficiency. The flow in the microchannel was laminar, but the formation of vortices promoted mixing in micro T-mixers. The generation of vortices was dependent on the channel dimensions, configurations and flow rate. Microreactors offer a high ratio of surface area to volume. Surface forces and interactions between fluids and surfaces are, therefore, often dominant factors. In certain cases, the interactions can be effectively utilised. Different wetting properties of solid materials (PTFE and stainless steel) were applied in the separation of immiscible liquid phases. A micro-scale plate coalescer with hydrophilic and hydrophobic surfaces was used for the continuous separation of organic and aqueous phases. Complete phase separation occurred in less than 20 seconds, whereas the separation time by settling exceeded 30 min. Fluid flows can be also intensified in suitable conditions. By adding certain additives into turbulent fluid flow, it was possible to reduce friction (drag) by 40 %. Drag reduction decreases frictional pressure drop in pipelines which leads to remarkable energy savings and decreases the size or number of pumping facilities required, e.g., in oil transport pipes. Process intensification enables operation often under more optimal conditions. The consequent cost savings from reduced use of raw materials and reduced waste lead to greater economic benefits in processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb a, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A literature survey and a theoretical study were performed to characterize residential chimney conditions for flue gas flow measurements. The focus is on Pitot-static probes to give sufficient basis for the development and calibration of a velocity pressure averaging probe suitable for the continuous dynamic (i.e. non steady state) measurement of the low flow velocities present in residential chimneys. The flow conditions do not meet the requirements set in ISO 10780 and ISO 3966 for Pitot-static probe measurements, and the methods and their uncertainties are not valid. The flow velocities in residential chimneys from a heating boiler under normal operating condi-tions are shown to be so low that they in some conditions result in voiding the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear Reynolds number dependent calibration coefficient that is correcting for the viscous effects is needed to avoid significant measurement errors. The wide range of flow velocity during normal boiler operation also results in the flow type changing from laminar, across the laminar to turbulent transition region, to fully turbulent flow, resulting in significant changes of the velocity profile during dynamic measurements. In addition, the short duct lengths (and changes of flow direction and duct shape) used in practice are shown to result in that the measurements are done in the hydrodynamic entrance region where the flow velocity profiles most likely are neither symmetrical nor fully developed. A measurement method insensitive to velocity profile changes is thus needed, if the flow velocity profile cannot otherwise be determined or predicted with reasonable accuracy for the whole measurement range. Because of particulate matter and condensing fluids in the flue gas it is beneficial if the probe can be constructed so that it can easily be taken out for cleaning, and equipped with a locking mechanism to always ensure the same alignment in the duct without affecting the calibration. The literature implies that there may be a significant time lag in the measurements of low flow rates due to viscous effects in the internal impact pressure passages of Pitot probes, and the significance in the discussed application should be studied experimentally. The measured differential pressures from Pitot-static probes in residential chimney flows are so low that the calibration and given uncertainties of commercially available pressure transducers are not adequate. The pressure transducers should be calibrated specifically for the application, preferably in combination with the probe, and the significance of all different error sources should be investigated carefully. Care should be taken also with the temperature measurement, e.g. with averaging of several sensors, as significant temperature gradients may be present in flue gas ducts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metric features and modular and laminar distributions of intrinsic projections of area 17 were studied in Cebus apella. Anterogradely and retrogradely labeled cell appendages were obtained using both saturated pellets and iontophoretic injections of biocytin into the operculum. Laminar and modular distributions of the labeled processes were analyzed using Nissl counterstaining, and/or cytochrome oxidase and/or NADPH-diaphorase histochemistry. We distinguished three labeled cell types: pyramidal, star pyramidal and stellate cells located in supragranular cortical layers (principally in layers IIIa, IIIb α, IIIb ß and IIIc). Three distinct axon terminal morphologies were found, i.e., Ia, Ib and II located in granular and supragranular layers. Both complete and partial segregation of group I axon terminals relative to the limits of the blobs of V1 were found. The results are compatible with recent evidence of incomplete segregation of visual information flow in V1 of Old and New World primates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Related momentum and energy equations describing the heat and fluid flow of Herschel-Bulkley fluids within concentric annular ducts are analytically solved using the classical integral transform technique, which permits accurate determination of parameters of practical interest in engineering such as friction factors and Nusselt numbers for the duct length. In analyzing the problem, thermally developing flow is assumed and the duct walls are subjected to boundary conditions of first kind. Results are computed for the velocity and temperature fields as well as for the parameters cited above with different power-law indices, yield numbers and aspect ratios. Comparisons are also made with previous work available in the literature, providing direct validation of the results and showing that they are consistent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re 5 x 10(5) will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k - omega SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature. [DOI: 10.1115/1.4007571]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.