950 resultados para Laminar erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar plasma technology was used to produce ceramic hardened layers of Al2O3-40% mass Ni composite powders on stainless steel substrates. In order to investigate the influences of processing conditions on the morphologies of the surface modified layers, two different powder-feeding methods were tested, one with carrier gas called the powder injection method, and the other without carrier gas called powder transfers method. The microscopic investigations demonstrate that the cross-section of the clad layers consists of two distinct microstructural regions, in which the Al2O3 phases exhibit different growth mechanisms. When the powder transfers method is adopted, the number density and volume fraction of the Al2O3 particles increase considerably and their distributions exhibit zonal periodical characteristics. When the powder-feeding rate increases, the microstructure of the Al2O3 phases changes from a small globular to a long needle shape. Finite element simulations show that the transient thermo-physical features of the pool substances, such as solidification rate and cooling rate, influence strongly the mechanisms of the nucleation and the directional growth of the Al2O3 phases in the thermal processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontransferred DC laminar plasma jets of stable flow and low impinging pressure acting on the substrate were used to heat W–Mo–Cu cast iron for phase transfer hardening of the surface layer. Substrates were heated in multipass with or without overlapping or heated with only single-pass. Surface morphologies of the molten trace and microstructure of the cross-section were observed, and the hardness distribution of the treated surface layer was examined. The surface layer of single-pass-heated specimen has an average hardness of about 900 HV0.1, while the specimen treated with multipass shows an average hardness of about 700 HV0.1, because of the heat effect from the neighboring pass treating, compared with the substrate hardness of about 300 HV0.1. The results demonstrate the stable and favorably controlled heating of the laminar plasma jet on the substrate surface and feasibility of using it as a tool for surface hardening of cast iron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main factors affecting interrill erosion-including runoff discharge, rainfall intensity, mean flow velocity, and slope gradient-were analyzed by using a gray relational analysis. An equation for interrill erosion was derived by coupling this analysis with dimensional and regression analyses. The values of erosion rates predicted by this equation were in good agreement with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用双向耦合的双流体模型,研究了大气悬浮沙尘的存在对大气边界层中层流底层流动特性及摩阻系数的影响,计算并讨论了不同沙尘含量下含尘大气相对于无尘大气摩阻系数的变化。结果表明:摩阻系数的变化取决于悬浮沙尘的初始运动状态和质量载荷率。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional modeling results show that the appearance of the long laminar plasma jet is less influenced by natural convection even as it is issuing into ambient air horizontally. However, plasma parameter distributions may deviate from axi-symmetry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual plasma spraying methods often involve entrainment of the surrounding air into the turbulent plasma core and result in coated materials having relatively high porosity and low adhesive strength. Therefore, exploration of new plasma spraying methods for fabricating high quality coatings to meet the requirement of special applications will be quite important. In this study, an alternative plasma spraying method, i.e. the low-pressure laminar plasma spraying process, is investigated and used in an attempt for spraying thermal barrier coatings (TBCs). Investigations on the characteristics of the laminar plasma jets, feeding methods for the ceramic powder and the formation process of the individual quenched splats have been carried out. The properties of the TBCs sprayed by laminar plasma jet process, such as the adhesive strength at the interface of the ceramic coating/bond coat, the surface roughness and microstructure, are examined by tensile tests and scanning electron microscope (SEM) observations.