985 resultados para Lac-insects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social organisms exhibit conspicuous intraspecific variation in all facets of their social organization. A prominent example of such variation in the highly eusocial Hymenoptera is differences in the number of reproductive queens per colony, Differences in queen number in ants are associated with differences in a host of reproductive and social traits, including queen phenotype and breeding strategy, mode of colony reproduction, and pattern of sex allocation. We examine the causes and consequences of changes in colony queen number and associated traits using the fire ant Solenopsis invicta as a principal model. Ecological constraints on mode of colony founding may act as important selective forces causing the evolution of queen number in this and many other ants, with social organization generally perpetuated across generations by means of the social environment molding appropriate queen phenotypes and reproductive strategies. Shifts in colony queen number have profound effects on genetic structure within nests and may also influence genetic structure at higher levels (aggregations of nests or local demes) because of the association of queen number with particular mating and dispersal habits. Divergence of breeding habits between populations with different social organizations has the potential to promote genetic differentiation between these social variants. Thus, evolution of social organization can be important in generating intrinsic selective regimes that channel subsequent social evolution and in initiating the development of significant population genetic structure, including barriers to gene flow important in cladogenesis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of labor is a complex phenomenon observed throughout nature. Theoretical studies have focused either on its emergence through self-organization mechanisms or on its adaptive consequences. We suggest that the interaction of self-organization, which undoubtedly characterizes division of labor in social insects, and evolution should be further explored. We review the factors empirically shown to influence task choice. In light of these factors, we review the most important self-organization and evolutionary models for division of labor and outline their advantages and limitations. We describe ways to unify evolution and self-organization in the theoretical study of division of labor and recent results in this area. Finally, we discuss some benchmarks and primary challenges of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Individuals commonly prefer certain trait values over others when choosing their mates. If such preferences diverge between populations, they can generate behavioral reproductive isolation and thereby contribute to speciation. Reproductive isolation in insects often involves chemical communication, and cuticular hydrocarbons, in particular, serve as mate recognition signals in many species. We combined data on female cuticular hydrocarbons, interspecific mating propensity, and phylogenetics to evaluate the role of cuticular hydrocarbons in diversification of Timema walking-sticks. RESULTS: Hydrocarbon profiles differed substantially among the nine analyzed species, as well as between partially reproductively-isolated T. cristinae populations adapted to different host plants. In no-choice trials, mating was more likely between species with similar than divergent hydrocarbon profiles, even after correcting for genetic divergences. The macroevolution of hydrocarbon profiles, along a Timema species phylogeny, fits best with a punctuated model of phenotypic change concentrated around speciation events, consistent with change driven by selection during the evolution of reproductive isolation. CONCLUSION: Altogether, our data indicate that cuticular hydrocarbon profiles vary among Timema species and populations, and that most evolutionary change in hydrocarbon profiles occurs in association with speciation events. Similarities in hydrocarbon profiles between species are correlated with interspecific mating propensities, suggesting a role for cuticular hydrocarbon profiles in mate choice and speciation in the genus Timema.