190 resultados para La0.5R0.5Ba2Cu3O7
Resumo:
Perovskite oxides of the composition La1-xCaxMnO3 ( LCM) have been investigated for the thermochemical splitting of H2O and CO2 to produce H-2 and CO, respectively. The study was carried out in comparison with La1-xSrxMnO3, CeO2 and other oxides. The LCM system exhibits superior characteristics in high-temperature evolution of oxygen, and in reducing CO2 to CO and H2O to H-2. The best results were obtained with La0.5Ca0.5MnO3 whose performance is noteworthy compared to that of other oxides including ceria. The orthorhombic structure of LCM seems to be a crucial factor.
Resumo:
The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.
Resumo:
Poster presentado en la conferencia: XXXV Bienal de la Real Sociedad Española de Química (A Coruña, 19-23 de Julio de 2015)
Resumo:
256 p.+anexos
Resumo:
经过分子筛层析和离子交换层析,我们从竹叶青(n妇删l黜3蚴堍g矾)蛇毒中纯化得到了竹叶青蛇毒L 氨基酸氧化酶(聊.L旧)。实验表明,7IsV.LAO是一种糖蛋白,其分子由非共价连接的两个相同的亚基组成, SDS-聚丙烯酰氨凝胶电泳一个亚基的表观分子量为58 kDa。俗v.LA0酶比活力为1100 U/IIlg,其分子脱掉糖基 化成分后不影响酶活力。聊.LA0在浓度为1.0隅/ⅡlL以上时可以诱导C8166细胞凋亡。7rsv.uLo对实验病原 微生物具有选择性抗生作用并具有明显的量效关系,对白色念珠菌(A-I℃c2002)、金黄色葡萄球菌(A,I℃c2592)和 短小芽孢杆菌(cMccBll207)的最小抑菌浓度分别是0.3,O.4和1.0∥nlL,即使在最高实验浓度10彬rIlL,’Isv- LA0对其它实验菌株也未显示抑菌作用。
Resumo:
Synthesis of polycationic compounds by the spray-drying technique is an interesting alternative in the domain of aqueous precursor synthesis methods. Spray drying yields high quality samples with good reproducibility. The possibility of scaling up for production of large quantities with fast processing time is well established by the commercial availability of powders of various compositions. In this paper, we have discussed the advantages and limitations of this method and demonstrated its interest by synthesizing a few polycationic compounds selected for their attractive properties of thermoelectricity [Bi1.68Ca2Co1.69O 8, La0.95A0.05CoO3 (A=Ca, Sr, Ba)] or magnetoresistance [La0.70A0.30MnO3 (A=Sr, Ba)]. We have confirmed the quality of these samples by reporting their structure, magnetic and transport properties. © 2010 Elsevier Ltd All rights reserved.
Resumo:
La0.7Ca0.3MnO3 samples were prepared in nano- and polycrystalline forms by the sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature. © 2007 Springer-Verlag.
Resumo:
Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.
Resumo:
本文对钙钛矿锰氧化物La0.67Sr0.33MnO3、La0.67Sr0.33Mn1-xFexO3和双钙钛矿氧化物Sr2-xLaxMnMoO6、Sr2-xLaxMnWO6和Sr2(Ni,Co)WO6的结构、磁性和磁电阻效应进行了系统地研究。 利用溶胶-凝胶方法制得La0.67Sr0.33MnO3粉体,通过不同的烧结温度,可以对样品的微观结构进行调控。其中,晶界的状态对自旋电子的输运产生了明显的影响。900℃和1300℃烧结的样品,都出现了远低于居里温度的金属-半导体导电行为转变,表明自旋电子的传输不仅与晶粒的大小有关,而且与晶界状态密切联系。合适的烧结条件,可以得到大的,使用温区较宽的磁电阻效应。 在La0.67Sr0.33Mn1-xFexO3(0≤x≤0.2)体系中,Fe3+的掺入没有明显改变La0.67Sr0.33MnO3的结构和晶胞参数,但却极大地降低了样品的居里温度。在x≥0.08时同样出现了低于居里温度的金属-半导体导电行为转变,这是由体系的铁磁态磁不均匀性导致的。电子顺磁共振研究表明,La0.67Sr0.33Mn1-xFexO3(0≤x≤0.20)的EPR谱中峰对峰宽(ΔHpp)在Tmin前后两种温区的线宽展宽机制不同。随着掺杂量的增加,在Tmin处的线宽逐渐变宽并且出现低场顺磁信号。x=0.20的样品,低场顺磁信号在380K左右开始衰减,与La0.67Sr0.33MnO3的顺磁信号具有类似的行为。我们利用相分离模型对系列样品的电子顺磁共振信号的变化规律进行了解释。 在Sr2-xLaxMnMoO6 (0≤x≤1)系列样品中,所有的样品都具有双钙钛矿有序结构。磁化强度、居里温度随掺杂量的增加而增大,但都存在磁受挫行为。在5T的外场下磁化强度依然没有饱和,实际测得的磁矩远远小于理论预测的结果。在低掺杂状态下出现分步磁化。La3+的掺入,不仅改变了体系电子能带的状况,而且极大的改变了体系的结构因素,两者竞争的结果,使体系的电磁性能产生了复杂的变化。
Resumo:
The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
La0.45Ce0.45F3:Tb (10 mol% Tb) nanoparticles was synthesized via sonochemical method and then coated with silica (SiO2) shells through a microemulsion process, resulting in the formation of core/shell structured LaCeF3:Tb/SiO2 nanoparticles. The obtained core/shell LaCeF3:Tb/SiO2 nanoparticles are spherical and uniform in size (average size about 60 nm), strongly fluorescent, and long fluorescence lifetime (1.87 ms). This kind of nanoparticles was water-soluble, which could be applied in biological labeling and other fields.
Resumo:
Effect of La-Mg-based alloy (AB(5)) addition on Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy has been investigated systematically. XRD shows that the matrix phase structure is not changed after adding AB(5) alloy, however, the amount of the secondary phase increases with increasing AB(5) alloy content. The electrochemical measurements show that the plateau pressure Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% La0.85Mg0.25Ni4.5Co0.35Al0.15 (X = 0, 1, 5, 10, 20) hydrogen storage alloys increase with increasing x, and the width of the pressure plateau first increases when x increases from 0 to 5 and then decreases as x increases further, and the maximum discharge capacity changes in the same trend.
Resumo:
采用溶胶-凝胶法制备了不同烧结温度的钙钛矿类锰氧化物La0.67Sr0.33MnO3样品。实验结果表明,在1573 K以上烧结的样品,晶粒出现异常长大,晶界效应明显。随着烧结温度的提高,磁化强度逐渐增大,但样品的居里温度基本不变。此外,在1173和1573 K温度下烧结的样品,均出现了低于居里温度的金属-半导体导电行为转变。在合适的烧结条件下,可以观察到隧道磁电阻(TMR)和超大磁电阻(CMR)2种磁电阻效应。实验表明,自旋电子的输运,不仅与样品平均粒径的大小和密度有关,而且与晶界的微观结构有密切关系。
Resumo:
The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.