978 resultados para LIQUID FLOW
Resumo:
Precursor systems of liquid crystalline phase were prepared using the surfactant PPG-5-Ceteth-20, isopropyl myristate, and water; gelatin microparticles containing propolis were then added into these systems. Homogeneity of dispersion, the in-system microparticle morphology, and sedimentation behavior of each formulation were evaluated. The rheological and mechanical properties (hardness, compressibility, and adhesiveness), the work of syringing, and the propolis release profile were also evaluated. All the formulations exhibited pseudoplastic flow and thixotropy, and they displayed storage modulus, loss modulus, dynamic viscosity, and loss tangent that depended on temperature, frequency, and composition. Mechanical properties varied significantly among the formulations being affected by changes in the composition and temperature. Raising the concentration of surfactant and adding propolis microparticles significantly decreased the work of syringing. The drug release was non-Fickian (anomalous) and there was no significant difference between the tested systems in the times required for 10%, 30%, and 50% release of the initial drug loading.
Resumo:
An exact analytical solution is obtained for the transient dissolution of solid spheres in a diffusion-controlled environment. This result provides a useful reference point for drug testing in humans. The dimensionless solution is expressed in terms of a single parameter, which accounts for solubility, bulk flow, and stagnant fluid composition. A simple, explicit and exact expression was found to predict time-to-complete dissolution (TCD). An approximate solution was also found which tracks the exact case for low solubility conditions.
Resumo:
A sensitive, selective, and reproducible in-tube solid-phase microextraction and liquid chromatographic (in-tube SPME/LC-UV) method for simultaneous determination of mirrazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline in human plasma was developed, validated and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. The quantification limits of the in-tube SPME/LC method varied between 20 and 50 ng/mL, with a coefficient of variation lower than 10%. The response of the in-tube SPME/LC method for most of the drugs was linear over a dynamic range from 50 to 500 ng/mL, with correlation coefficients higher than 0.9985. The in-tube SPME/LC can be successfully used to analyze plasma samples from ageing patients undergoing therapy with nontricyclic antidepressants. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and automated method is described for determination of rifampicin in plasma samples for therapeutic drug monitoring by in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC). Important factors in the optimization of in-tube SPME are discussed, such as coating type, sample pH, sample draw/eject volume, number of draw/eject cycles, and draw/eject flow rate. Analyte pre-concentrated in the polyethylene glycol phase was directly transferred to the liquid chromatographic column by percolation of the mobile phase, without carryover. The method was linear over the 0.1-100 mu g/mL range, with a linear coefficient value (r(2)) of 0.998. The inter-assay precision presented coefficient of variation <= 1.7%. The effectiveness and practicability of the proposed method are proven by analysis of plasma samples from ageing patients undergoing therapy with rifampicin. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
We have utilised the combination of sensitivity and specificity afforded by coupling high-performance liquid chromatography (HPLC) to a tandem mass spectrometer (MS-MS) to produce an assay which is suitable for assaying glutathione (GSH) concentrations in liver tissue. The sensitivity suggests it may also be suitable for extrahepatic tissues, The method has been validated for GSH using mouse liver samples and also allows the assay of GSSG. The stability of GSH under conditions relevant to the assay has been determined. A 20-mul amount of a diluted methanol extract of tissue is injected with detection limits of 0.2 pmol for GSH and 2 pmol for GSSG. The HPLC uses an Altima C-18 (150X4.6 mm, 5 mum) column at 35 degreesC. Chromatography utilises a linear gradient from 0 to 10% methanol in 0.1% formic acid over 5 min, with a final isocratic stage holding at 10% methanol for 5 min. Total flow rate is 0.8 ml/min. The transition from the M+H ion (308.1 m/z for GSH, and 613.3 m/z for GSSG) to the 162.0 m/z (GSH) and 355.3 m/z (GSSG) fragments are monitored. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A model has been developed which enables the viscosities of coal ash slags to be predicted as a function of composition and temperature under reducing conditions. The model describes both completely liquid and heterogeneous, i.e. partly crystallised, slags in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. The Urbain formalism has been modified to describe the viscosities of the liquid slag phase over the complete range of compositions and a wide range of temperatures. The computer package F * A * C * T was used to predict the proportions of solids and the compositions of the remaining liquid phases. The Roscoe equation has been used to describe the effect of presence of solid suspension (slurry effect) on the viscosity of partly crystallised slag systems. The model provides a good description of the experimental data of fully liquid, and liquid + solids mixtures, over the complete range of compositions and a wide range of temperatures. This model can now be used for viscosity predictions in industrial slag systems. Examples of the application of the new model to coal ash fluxing and blending are given in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The paper presents methods for measurement of convective heat transfer distributions in a cold flow, supersonic blowdown wind tunnel. The techniques involve use of the difference between model surface temperature and adiabatic wall temperature as the driving temperature difference for heat transfer and no active heating or cooling of the test gas or model is required. Thermochromic liquid crystals are used for surface temperature indication and results presented from experiments in a Mach 3 flow indicate that measurements of the surface heat transfer distribution under swept shock wave boundary layer interactions can be made. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
There is considerable anecdotal evidence from industry that poor wetting and liquid distribution can lead to broad granule size distributions in mixer granulators. Current scale-up scenarios lead to poor liquid distribution and a wider product size distribution. There are two issues to consider when scaling up: the size and nature of the spray zone and the powder flow patterns as a function of granulator scale. Short, nucleation-only experiments in a 25L PMA Fielder mixer using lactose powder with water and HPC solutions demonstrated the existence of different nucleation regimes depending on the spray flux Psi(a)-from drop-controlled nucleation to caking. In the drop-controlled regime at low Psi(a) values. each drop forms a single nucleus and the nuclei distribution is controlled by the spray droplet size distribution. As Psi(a) increases, the distribution broadens rapidly as the droplets overlap and coalesce in the spray zone. The results are in excellent agreement with previous experiments and confirm that for drop-controlled nucleation. Psi(a) should be less than 0.1. Granulator flow studies showed that there are two powder flow regimes-bumping and roping. The powder flow goes through a transition from bumping to roping as impeller speed is increased. The roping regime gives good bed turn over and stable flow patterns. This regime is recommended for good liquid distribution and nucleation. Powder surface velocities as a function of impeller speed were measured using high-speed video equipment and MetaMorph image analysis software, Powder surface velocities were 0.2 to 1 ms(-1)-an order of magnitude lower than the impeller tip speed. Assuming geometrically similar granulators, impeller speed should be set to maintain constant Froude number during scale-up rather than constant tip speed to ensure operation in the roping regime. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
An experimental and theoretical study of the electro-rheological effects observed in the nematic phase of 4-n-heptyl-4'-cyanobiphenyl has been conducted. This liquid crystal appears to be a model system, in which the observed rheological behaviour can be interpreted by the Leslie-Ericksen continuum theory for low molecular weight liquid crystals. Flow curves are illustrated at different temperatures and under the influence of an external electric field ranging from 0 to 3 kV mm-1, applied perpendicular to the direction of flow. Also presented is the apparent viscosity as a function of temperature, over similar values of electric field, obtained at different shear rates. A master flow curve has been constructed for each temperature by dividing the shear rate by the square of the electric field and multiplying by the square of a reference value of electric field. In a log-log plot, two Newtonian plateaux are found to appear at low and high shear rates, connected by a shear-thinning region. We have applied the Leslie-Ericksen continuum theory, in which the director alignment angle is a function of the electric field and the flow field boundary conditions are neglected, to determine viscoelastic parameters and the dielectric anisotropy.
Resumo:
Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.