973 resultados para LINEAR-CHAIN
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
A well defined structure is available for the carboxyl half of the cellular prion protein (PrPc), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrPc recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrPc as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised I predominant and 3 additional scFv-Ps that contained different V-H and V-L sequences and that bound specifically to the PrPc target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrPc residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrPc that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the aminocentral region of PrPc. In addition, the binding of MAbs to known linear epitopes within PrPc depends strongly on the endpoints of the target PrPc fragment used. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Analyses of high-density single-nucleotide polymorphism (SNP) data, such as genetic mapping and linkage disequilibrium (LD) studies, require phase-known haplotypes to allow for the correlation between tightly linked loci. However, current SNP genotyping technology cannot determine phase, which must be inferred statistically. In this paper, we present a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for population haplotype frequency estimation, particulary in the context of LD assessment. The novel feature of the method is the incorporation of a log-linear prior model for population haplotype frequencies. We present simulations to suggest that 1) the log-linear prior model is more appropriate than the standard coalescent process in the presence of recombination (>0.02cM between adjacent loci), and 2) there is substantial inflation in measures of LD obtained by a "two-stage" approach to the analysis by treating the "best" haplotype configuration as correct, without regard to uncertainty in the recombination process. Genet Epidemiol 25:106-114, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.
Resumo:
Novel, linear, soluble, high-molecular-weight, film-forming polymers and copolymers in which main-chain crown ether units alternate with aliphatic (C-10-C-16) units have been obtained for the first time from aromatic electrophilic substitution reactions of crown ethers by aliphatic dicarboxylic acids followed by reduction of the carbonyl groups. The crown ether unit is dibenzo-18-crown-6, dibenzo-21-crown-7, dibenzo-24-crown-8, or dibenzo-30-crown-10; the aliphatic spacer is derived from a dicarboxylic acid (sebacic, 1,12-dodecanedicarboxylic, hexadecanedioic or 1,4-phenylenediacetic acids). The reactions were performed at 35 degrees C in a mixture of methanesulfonic acid (MSA) with phosphorus pentoxide, 12:1 (w/w), (Eaton's reagent). The carbonyl groups in the polyketones obtained were completely reduced to methylene linkages by treatment at room temperature with triethylsilane in a mixture of trifluoroacetic acid and dichloromethane. Polymers containing in the main chain crown ethers alternating with oxyindole fragments were prepared by one-pot condensation of crown ethers with isatin in a medium of Eaton's reagent. A possible reaction mechanism is suggested. According to IR and NMR analyses, the polyacylation reactions lead to the formation of isomeric (syn/anti-substituted) crown ether units in the main chain. The polymers obtained were soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. DSC and X-ray studies of the polymers with "symmetrical" crown ethers reveal the presence of the endotherms corresponding to the supramolecular assemblies.
Resumo:
Chain in both its forms - common (or stud-less) and stud-link - has many engineering applications. It is widely used as a component in the moorings of offshore floating systems, where its ruggedness and corrosion resistance make it an attractive choice. Chain exhibits some interesting behaviour in that when straight and subject to an axial load it does not twist or generate any torque, but if twisted or loaded when in a twisted condition it behaves in a highly non-linear manner, with the torque dependent upon the level of twist and axial load. Clearly an understanding of the way in which chains may behave and interact with other mooring components (such as wire rope, which also exhibits coupling between axial load and generated torque) when they are in service is essential. However, the sizes of chain that are in use in offshore moorings (typical bar diameters are 75 mm and greater) are too large to allow easy testing. This paper, which is in two parts, aims to address the issues and considerations relevant to torque in mooring chain. The first part introduces a frictionless theory that predicts the resultant torques and 'lift' in the links as non-dimensionalized functions of the angle of twist. Fortran code is presented in an Appendix, which allows the reader to make use of the analysis. The second part of the paper presents results from experimental work on both stud-less (41 mm) and stud-link (20.5 and 56 mm) chains. Torsional data are presented in both 'constant twist' and 'constant load' forms, as well as considering the lift between the links.
Resumo:
Chain is a commonly used component in offshore moorings where its ruggedness and corrosion resistance make it an attractive choice. Another attractive property is that a straight chain is inherently torque balanced. Having said this, if a chain is loaded in a twisted condition, or twisted when under load, it exhibits highly non-linear torsional behaviour. The consequences of this behaviour can cause handling difficulties or may compromise the integrity of the mooring system, and care must be taken to avoid problems for both the chain and any components to which it is connected. Even with knowledge of the potential problems, there will always be occasions where, despite the utmost care, twist is unavoidable. Thus it is important for the engineer to be able to determine the effects. A frictionless theory has been developed in Part 1 of the paper that may be used to predict the resultant torques and movement or 'lift' in the links as non-dimensional functions of the angle of twist. The present part of the paper describes a series of experiments undertaken on both studless and stud-link chain to allow comparison of this theoretical model with experimental data. Results are presented for the torsional response and link lift for 'constant twist' and 'constant load' type tests on chains of three different link sizes.
Resumo:
We previously reported sequence determination of neutral oligosaccharides by negative ion electrospray tandem mass spectrometry on a quadrupole-orthogonal time-of-flight instrument with high sensitivity and without the need of derivatization. In the present report, we extend our strategies to sialylated oligosaccharides for analysis of chain and blood group types together with branching patterns. A main feature in the negative ion mass spectrometry approach is the unique double glycosidic cleavage induced by 3-glycosidic substitution, producing characteristic D-type fragments which can be used to distinguish the type 1 and type 2 chains, the blood group related Lewis determinants, 3,6-disubstituted core branching patterns, and to assign the structural details of each of the branches. Twenty mono- and disialylated linear and branched oligosaccharides were used for the investigation, and the sensitivity achieved is in the femtomole range. To demonstrate the efficacy of the strategy, we have determined a novel complex disialylated and monofucosylated tridecasaccharide that is based on the lacto-N-decaose core. The structure and sequence assignment was corroborated by :methylation analysis and H-1 NMR spectroscopy.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
We present extensive molecular dynamics simulations of the dynamics of diluted long probe chains entangled with a matrix of shorter chains. The chain lengths of both components are above the entanglement strand length, and the ratio of their lengths is varied over a wide range to cover the crossover from the chain reptation regime to tube Rouse motion regime of the long probe chains. Reducing the matrix chain length results in a faster decay of the dynamic structure factor of the probe chains, in good agreement with recent neutron spin echo experiments. The diffusion of the long chains, measured by the mean square displacements of the monomers and the centers of mass of the chains, demonstrates a systematic speed-up relative to the pure reptation behavior expected for monodisperse melts of sufficiently long polymers. On the other hand, the diffusion of the matrix chains is only weakly perturbed by the diluted long probe chains. The simulation results are qualitatively consistent with the theoretical predictions based on constraint release Rouse model, but a detailed comparison reveals the existence of a broad distribution of the disentanglement rates, which is partly confirmed by an analysis of the packing and diffusion of the matrix chains in the tube region of the probe chains. A coarse-grained simulation model based on the tube Rouse motion model with incorporation of the probability distribution of the tube segment jump rates is developed and shows results qualitatively consistent with the fine scale molecular dynamics simulations. However, we observe a breakdown in the tube Rouse model when the short chain length is decreased to around N-S = 80, which is roughly 3.5 times the entanglement spacing N-e(P) = 23. The location of this transition may be sensitive to the chain bending potential used in our simulations.
Resumo:
We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-beta amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.
Resumo:
The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.
Resumo:
We present molecular dynamics (MD) and slip-springs model simulations of the chain segmental dynamics in entangled linear polymer melts. The time-dependent behavior of the segmental orientation autocorrelation functions and mean-square segmental displacements are analyzed for both flexible and semiflexible chains, with particular attention paid to the scaling relations among these dynamic quantities. Effective combination of the two simulation methods at different coarse-graining levels allows us to explore the chain dynamics for chain lengths ranging from Z ≈ 2 to 90 entanglements. For a given chain length of Z ≈ 15, the time scales accessed span for more than 10 decades, covering all of the interesting relaxation regimes. The obtained time dependence of the monomer mean square displacements, g1(t), is in good agreement with the tube theory predictions. Results on the first- and second-order segmental orientation autocorrelation functions, C1(t) and C2(t), demonstrate a clear power law relationship of C2(t) C1(t)m with m = 3, 2, and 1 in the initial, free Rouse, and entangled (constrained Rouse) regimes, respectively. The return-to-origin hypothesis, which leads to inverse proportionality between the segmental orientation autocorrelation functions and g1(t) in the entangled regime, is convincingly verified by the simulation result of C1(t) g1(t)−1 t–1/4 in the constrained Rouse regime, where for well-entangled chains both C1(t) and g1(t) are rather insensitive to the constraint release effects. However, the second-order correlation function, C2(t), shows much stronger sensitivity to the constraint release effects and experiences a protracted crossover from the free Rouse to entangled regime. This crossover region extends for at least one decade in time longer than that of C1(t). The predicted time scaling behavior of C2(t) t–1/4 is observed in slip-springs simulations only at chain length of 90 entanglements, whereas shorter chains show higher scaling exponents. The reported simulation work can be applied to understand the observations of the NMR experiments.
Resumo:
A real-time polymerase chain reaction (PCR) test was developed on the basis of the Leishmania glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, Leishmania (Viannia) and Leishmania (Leishmania) in the Americas. Furthermore, use of TaqMan probes enables distinction between L. (V.) braziliensis or L. (V.) peruviania from the other L. (Viannia) species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for L. (Leishmania) subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies Leishmania in human biopsy specimens and represents a new tool to study leishmaniasis.
Resumo:
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.