991 resultados para LI-AIR
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Atmospheric concentration of total suspended particulate matter (TSP) and associated heavy metals are a great concern due to their adverse health impacts and contribution to stormwater pollution. This paper discusses the outcomes of a study which investigated the variation of atmospheric TSP and heavy metal concentrations with traffic and land use characteristics during weekdays and weekends. Data for this study was gathered from fifteen sites at the Gold Coast, Australia using a high volume air sampler. The study detected consistently high TSP concentrations during weekdays compared to weekends. This confirms the significant influence of traffic related sources on TSP loads during weekdays. Both traffic and land use related sources equally contribute to TSP during weekends. Almost all the measured heavy metals showed high concentration on weekdays compared to weekends indicating significant contributions from traffic related emissions. Among the heavy metals, Zn concentration was the highest followed by Pb. It is postulated that re-suspension of previously deposited reserves was the main Pb source. Soil related sources were the main contributors of Mn.
Resumo:
Windows are one of the most significant elements in the design of buildings. Whether there are small punched openings in the facade or a completely glazed curtain wall, windows are usually a dominant feature of the building's exterior appearance. From the energy use perspective, windows may also be regarded as thermal holes for a building. Therefore, window design and selection must take both aesthetics and serviceability into consideration. In this paper, using building computer simulation techniques, the effects of glass types on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that a glass type with lower shading coefficient will have a lower building cooling load and total energy use. Through the comparison of results between current and future weather scenarios, it is identified that the pattern found from the current weather scenario would also exist in the future weather scenario, although the scale of change would become smaller. The possible implication of glazing selection in face of global warming is also examined. It is found that compared with its influence on building thermal performance, its influence on the building energy use is relatively small or insignificant.
Resumo:
For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between ~0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles.
Resumo:
Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.