942 resultados para LHCI pigment-protein complex
Resumo:
Background: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype–genotype link between the displayed protein and the encoding gene. Results: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50–DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein–plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype–genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Background Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. Results A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/ E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Resumo:
Retinol-binding protein and its complex with prealbumin were isolated from goat serum by chromatography on DEAE-Sephadex A-50, gel filtration and immuno-affinity chromatography on antigoat-serum albumin-Sepharose 4B. The homogeneous prealbumin-retinol-binding protein complex had a molecular weight of 75 000. Both on electrophoresis and in the presence of 2 M urea, the complex dissociated into retinol-binding protein and prealbumin. The molecular weight, electrophoretic behaviour, ultraviolet and fluorescence spectra of goat retinol-binding protein were similar to those isolated from other sources. On sodium dodecyl sulphate gel electrophoresis, goat prealbumin (molecular weight ≈ 55 000) exhibited two bands corresponding to molecular weights 26 000 and 13 000. This suggests that either goat prealbumin consists of two non-identical sub-units or perhaps complete dissociation might not have occurred. Goat prealbumin was able to bind Image -thyroxine and retinol-binding protein.
Resumo:
Inosine 5' monophosphate dehydrogenase (IMPDH II) is a key enzyme involved in the de novo biosynthesis pathway of purine nucleotides and is also considered to be an excellent target for cancer inhibitor design. The conserve R 322 residue (in human) is thought to play some role in the recognition of inhibitor and cofactor through the catalytic D 364 and N 303. The 15 ns simulation and the water dynamics of the three different PDB structures (1B3O, 1NF7, and 1NFB) of human IMPDH by CHARMM force field have clearly indicated the involvement of three conserved water molecules (W-L, W-M, and W-C) in the recognition of catalytic residues (R 322, D 364, and N 303) to inhibitor and cofactor. Both the guanidine nitrogen atoms (NH1 and NH 2) of the R 322 have anchored the di- and mono-nucleotide (cofactor and inhibitor) binding domains via the conserved W-C and W-L water molecules. Another conserved water molecule W-M seems to bridge the two domains including the R 322 and also the W-C and W-L through seven centers H-bonding coordination. The conserved water molecular triad (W-C - W-M - W-L) in the protein complex may thought to play some important role in the recognition of inhibitor and cofactor to the protein through R 322 residue.
Resumo:
Iron(III) complexes FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4) and benzoi]dipyridro3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized, and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five. electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about 0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage Of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO center dot radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC50 value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total Cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAFT nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.
Resumo:
A strategy called macro-(affinity ligand) facilitated three-phase partitioning (MLFTPP) is described for refolding of a diverse set of recombinant proteins starting from the solubilized inclusion bodies. It essentially consists of: (i) binding of the protein with a suitable smart polymer and (ii) precipitating the polymer-protein complex as an interfacial layer by mixing in a suitable amount of ammonium sulfate and t-butanol. Smart polymers are stimuli-responsive polymers that become insoluble on the application of a suitable stimulus (e.g., a change in the temperature, pH, or concentration of a chemical species such as Ca 2+ or K +). The MLFTPP process required approximately 10min, and the refolded proteins were found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The folded proteins were characterized by fluorescence emission spectroscopy, circular dichroism spectroscopy, biological activity, melting temperature, and surface hydrophobicity measurements by 8-anilino-1-naphthalenesulfonate fluorescence. Two refolded antibody fragments were also characterized by measuring K D by Biacore by using immobilized HIV-1 gp120. The data demonstrate that MLFTPP is a rapid and convenient procedure for refolding a variety of proteins from inclusion bodies at high concentration. Although establishing the generic nature of the approach would require wider trials by different groups, its success with the diverse kinds of proteins tried so far appears to be promising.
Resumo:
Vulval differentiation in C. elegans is mediated by an Epidermal growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have cloned unc-101, a negative regulator of vulval differentiation of the nematode C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the trans-Golgi clathrin-associated protein complex. This identity was confirmed by cloning and comparing sequence of a C. elegans homolog of AP50, the medium chain of the plasma membrane clathrin-associated protein complex. I provided the first genetic evidence that the trans-Golgi clathrin-coated vesicles are involved in regulation of an EGF signaling pathway. Most of the unc-101 alleles are deletions or nonsense mutations, suggesting that these alleles severely reduce the unc-101 activity. A hybrid gene that contains parts of unc-101 and mouse AP4 7 rescued at least two phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are conserved between nematodes and mammals.
unc-101 mutations can cause a greater than wild-type vulval differentiation in combination with certain mutations in sli-1, another negative regulator of the vulval induction pathway. A mutation in a new gene, rok-1, causes no defect by itself, but causes a greater than wild-type vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; sli-1 triple mutants display a greater extent of vulval differentiation than any double mutant combinations of unc-101, rok-1 and sli-1. Therefore, rok-1 locus defines another negative regulator of the vulval induction pathway.
I analyzed a second gene encoding an AP47 homolog in C. elegans. This gene, CEAP47, encodes a protein 72% identical to both unc-101 and mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 sequences can rescue phenotypes of unc-101 mutants, indicating that UNC- 101 and CEAP47 proteins can be redundant if expressed in the same set of cells.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
Part I
The infection of E. coli by ΦX174 at 15°C is abortive; the cells are killed by the infection but neither mature phage nor SS (single-stranded) DNA are synthesized. Parental RF (replicative form) is formed and subsequently replicated at 15°C. The RF made at 15°C shows normal infectivity and full competence to act as precursor to progeny SS DNA after an increase in temperature to 37°C. The investigations suggest that all of the proteins required for SS DNA synthesis and phage maturation are present in the abortive infection at 15°C.
Three possible causes are suggested for the abortive infection at 15°C: (a) A virus-coded protein whose role is essential to the infection is made at 15°C and assumes its native conformation, but its rate of activity is too low at this temperature to sustain the infection process. (b) Virus maturation may involve the formation of a DNA-protein complex and conformational changes which have an energy threshold infrequently reached at 15°C. (c) A host-coded protein present in uninfected cells, and whose activity is essential to the infection at all temperatures, but not to the host at 15°C, is inactive at 15°C. An hypothesis of this type is offered which proposes that the temperature-limiting factor in SS DNA synthesis in vivo may reflect a temperature-dependent property of the host DNA polymerase.
Part II
Three distinct stages are demonstrated in the process whereby ΦX174 invades its host: (1) Attachment: The phage attach to the cell in a manner that does not irreversibly alter the phage particle and which exhibits "single-hit" kinetics. The total charge on the phage particle is demonstrated to be important in determining the rate at which stable attachment is effected. The proteins specified by ΦX cistrons II, III and VII play roles, which may be indirect, in the attachment reaction. (2) Eclipse: 'The attached phage undergo a conformational change. Some of the altered phage particles spontaneously detach from the cell (in a non-infective form) while the remainder are more tightly bound to the cell. The altered phage particles detached (spontaneously or chemically) from such complexes have at least 40% of their DNA extruded from the phage coat. It is proposed that this particle is, or derives from, a direct intermediate in the penetration of the viral DNA.
The kinetics for the eclipse of attached phage particles are first-order with respect to phage concentration and biphasic; about 85% of the phage eclipse at one rate (k = 0.86 min-1) and the remainder do so at a distinctly lesser rate (k = 0.21 min-1).
The eclipse event is very temperature-dependent and has the relatively high Arrhenius activation energy of 36.6 kcal/mole, indicating the cooperative nature of the process. The temperature threshold for eclipse is 17 to 18°C.
At present no specific ΦX cistron is identified as affecting the eclipse process. (3) DNA penetration: A fraction of the attached, eclipsed phage particles corresponding in number to the plaque-forming units complete DNA penetration. The penetrated DNA is found in the cell as RF, and the empty phage protein coat remains firmly attached to the exterior of the cell. This step is inhibited by prior irradiation of the phage with relatively high doses of UV light and is insensitive to the presence of KCN and NaN3. Temporally excluded superinfecting phages do not achieve DNA penetration.
Both eclipsed phage particles and empty phage protein coats may be dissociated from infected cells; some of their properties are described.
Resumo:
一、实验证明了Cd H、Mg“在小麦类囊体膜上色素蛋白复合体的解聚和再聚合过程中,具有不同的作用。因此,二阶阳离子对激发能在光系统间的分配调节作用,可能不能仅仅用“静电现象”(Barber(1980))去解释。分析表明,在Ca2+作用下与PSII内周天线CP-47,GP-43多肽结合的L H C II和LHClb是来自间质膜区的PS I系统的。从PSI迁移到P S II的捕光色素蛋白,增加了PSII的捕光截面,从而促进了激发能有利于PsII分配。 二、Ca2*、Mg2+对小麦和菠菜类囊体膜光谱性质的影响有所差异。Ca2+对小麦类囊体膜光谱性质的影响还可以随着介质中Ca2+的消除而消除。同小麦类囊体膜相比,菠菜PSII以及LHCII更为集中在基粒区域,这可能是菠菜类囊体膜强Fv以及高F888/F735,F89H/F735比值的原因。因此,Ca2+,HgH对激发能在光系统间分配的调节作用是依赖于光系统间激发能及天线色素蛋白的分配状况的。 三、对菠菜叶中分离的PSII-RC: D1-D2-cyt b55g复合物进行的低温荧光发射光谱的研究表明,这一复合物可能具有F681和F684两种波长的低温荧光发射,但它们通常并不是同时存在,而是取决于Ca-670与Ca-680 Chla分子的相对含量的。PSII-RC内周无线GP-47,GP-43多肽的存在是D1-D2-cyt b559复合物低温荧光发射红移的原因;而D1一D2cyt b559复合物的不稳定性则与其低温荧光发射的蓝移现象有关。 从蕹菜叶中分离的Dl—D2-cyt b559复合物的F 381低温荧光发射也是由其相对含量较高的C.i-6 7 0 Chla分子的存在决定的。对蕹菜D 1一D 2-cyt b559复合物中的分析还表明,F 681的低温荧光发射直接来源于Di/D2复合物,而415nm处相对较强的吸收,则可能主要是与Pheo的存在有关的。 四、多肽分析与光谱分析的对照表明,CP-26内周天线多肽可能是PSII中F695低温荧光发射的真正来源。 五、实验分析了蔗糖密度离心分离的LHClI和PSI颗粒。结果排除了CP-27多肽(以及CP,一2 5,GP-47,CP -4 3多肽)具有F695低温荧光发射的可能,因此支持了CP-26多肽是PSII中F695低荧光发射来源的看法。对PsI颗粒的分析表明,P700的存在可能是与PSI-RC中较大的Sub-I亚基相联系的。 六、根据以上的研究结果,提出了PSI,PSII在类囊体膜上的结构模式,并对其内容进行了分析和讨论。
Resumo:
通过实验我们证明Ca2+对叶绿体膜的流动性,对PS I和PS II叶绿素蛋白质复合物的相对含量,以及PS I和PS II的多肽均有影响。 Ca2+对叶绿体膜表层的流动性影响不大,但降低了叶绿体膜深层脂质分子的流动性。从另一个角度阐明了Ca2+抑制光能从PS II向PS I传递的机制。 Ca2+可使PS I的21,23,110KD的多肽转移至PS II,LHCP1和LHCP2中的CF1的两个亚基(55,60KD)转至CPa和LHCP3,从而增加了PS II的捕光截面,引起激发能在两个系统之间的分配的改变。 用免疫学方法可以证明CPIa2和LHCP2的Ab为复合抗体,CPIa1的Ab为单抗,我们可以推测向日葵的不同叶绿素蛋白质复合物具有同源性。
Resumo:
发菜(Nostoc flagelliforme Born. et Flah.)的细胞壁由纤维素、半纤维素、糖脂和蛋白质组成。未经破碎的细胞难以进行各种光合特性的研究。由于纯度较高的发菜类囊体膜制备比较困难,对它的光合机理的研究一直是停留在整体水平上进行。我们采用French Press低温下高压破碎细胞,建立了一种快速简便的制备方法。在提取液中加入一定浓度的Ca2+ (Ca2+既有助于维持类囊体膜的放氧活性又可以使类囊体膜在较低的离心速度下使类囊体膜得到凝集沉淀),从而在较短时间内、在高速离心的情况下得到了纯度较高并具有较高放氧活性的发菜类囊体膜。在此基础上,我们采用改进的Allen(1991)的温和绿胶系统,首次对陆生蓝藻发菜类囊体膜色素蛋白复合体进行了分离,共分离出了11条绿色的色素蛋白复合物条带和两条浅黄色的条带。7条绿色的色素蛋白复合物条带属于PSI组分,4条绿色的蛋白复合物条带属于PSII组分,其中一条浅黄色条带系未被报道过的新的色素蛋白复合物条带,经其光谱性质的分析初步鉴定为类胡萝卜素蛋白复合物,此复合物的分离有助于解释发菜独特的适应荒漠、半荒漠地带高光辐射的特性。 本文还对干燥状态、复水30分钟后和复水生长24小时后的野生发菜及人工培养的发菜藻丝体膜脂及其脂肪酸组成进行了分析。发菜的膜脂由MGDG、MGDG、SQDG和PG组成,其酯酰基部位连接有16:0、16:1、18:0、18:1、18:2和18:3六种脂肪酸。野生发菜中具有高含量的不饱和脂肪酸,其含量可达总脂的73%,其中16:1和18:3分别达到28.9mol%和34.3mol%,远远高于已报道的其它蓝藻,所以我们推测发菜具有极强的抗逆性和其膜脂不饱和程度密切相关。分析不同处理的发菜的膜脂和脂肪酸组成表明,复水对野生发菜的膜脂及其脂肪酸组成没有显著影响,说明发菜的膜脂和脂肪酸组成在干燥状态下能保持很高的稳定性。从野生发菜分离出的藻丝体在25 ℃条件下培养,其膜脂脂肪酸组成发生了显著变化,主要表现为脂肪酸的不饱和程度的大幅度降低,18:3从34.9mol%降低到8.6mol%,16:1从28.9mol%降低到13.9mol%。上述结果表明了发菜具有极强的通过改变其膜脂的脂肪酸组成而适应生存环境的能力。
Resumo:
Influence of two different forms of nitrogen on growth and physiological aspects of water-cultured seedlings of Rhizophora apiculata was studied. Of the two forms of nitrogen supplied to the growth medium, ammonium nitrogen was better than nitrate nitrogen by exhibiting increased dry matter production, shoot length, leaf area and also enhanced the contents of carotenoids, chlorophylls and their presence in photosystems and light harvesting protein complex.