976 resultados para LEFT-VENTRICULAR VOLUMES
Resumo:
Introducción y objetivos. Se ha señalado que, en la miocardiopatía hipertrófica (MCH), la desorganización de las fibras regionales da lugar a segmentos en los que la deformación es nula o está gravemente reducida, y que estos segmentos tienen una distribución no uniforme en el ventrículo izquierdo (VI). Esto contrasta con lo observado en otros tipos de hipertrofia como en el corazón de atleta o la hipertrofia ventricular izquierda hipertensiva (HVI-HT), en los que puede haber una deformación cardiaca anormal, pero nunca tan reducida como para que se observe ausencia de deformación. Así pues, proponemos el empleo de la distribución de los valores de strain para estudiar la deformación en la MCH. Métodos. Con el empleo de resonancia magnética marcada (tagged), reconstruimos la deformación sistólica del VI de 12 sujetos de control, 10 atletas, 12 pacientes con MCH y 10 pacientes con HVI-HT. La deformación se cuantificó con un algoritmo de registro no rígido y determinando los valores de strain sistólico máximo radial y circunferencial en 16 segmentos del VI. Resultados. Los pacientes con MCH presentaron unos valores medios de strain significativamente inferiores a los de los demás grupos. Sin embargo, aunque la deformación observada en los individuos sanos y en los pacientes con HVI-HT se concentraba alrededor del valor medio, en la MCH coexistían segmentos con contracción normal y segmentos con una deformación nula o significativamente reducida, con lo que se producía una mayor heterogeneidad de los valores de strain. Se observaron también algunos segmentos sin deformación incluso en ausencia de fibrosis o hipertrofia. Conclusiones. La distribución de strain caracteriza los patrones específicos de deformación miocárdica en pacientes con diferentes etiologías de la HVI. Los pacientes con MCH presentaron un valor medio de strain significativamente inferior, así como una mayor heterogeneidad de strain (en comparación con los controles, los atletas y los pacientes con HVI-HT), y tenían regiones sin deformación.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
ABSTRACT: Transapical aortic valve replacement is an established technique performed in high-risk patients with symptomatic aortic valve stenosis and vascular disease contraindicating trans-vascular and trans-aortic procedures. The presence of a left ventricular apical diverticulum is a rare event and the treatment depends on dimensions and estimated risk of embolisation, rupture, or onset of ventricular arrhythmias. The diagnosis is based on standard cardiac imaging and symptoms are very rare. In this case report we illustrate our experience with a 81 years old female patient suffering from symptomatic aortic valve stenosis, respiratory disease, chronic renal failure and severe peripheral vascular disease (logistic euroscore: 42%), who successfully underwent a transapical 23 mm balloon-expandable stent-valve implantation through an apical diverticulum of the left ventricle. Intra-luminal thrombi were absent and during the same procedure were able to treat the valve disease and to successfully exclude the apical diverticulum without complications and through a mini thoracotomy. To the best of our knowledge, this is the first time that a transapical procedure is successfully performed through an apical diverticulum.
Resumo:
While the lesions produced by transmyocardial laser revascularisation (TMLR) induce scar formation, it is important to determine whether this procedure can be deleterious for the left-ventricular function, which is already impaired by the underlying ischaemic process in some patients. Ten channels were drilled in the left lateral wall of the hearts of ten pigs (mean weight, 61 +/- 8.2kg) with a Holmium:YAG laser. Haemodynamic measurements and echocardiographic assessment of left-ventricular function were performed before the TMLR procedure, 5 and 30 min after, and lastly after 5 min of pacing at a rate increased by 30% of the baseline value. Echocardiographic assessment was in the short axis at the level of the laser channels, and included left-ventricular ejection fraction and segmental wall motility of the lasered area (scale 0-3:0 = normal 1 = hypokinesia, 2 = akinesia, 3 = dyskinesia). Values at 5 and 30 min were compared with baseline values; the difference was considered significant if p < 0.05. Haemodynamical values were stable throughout all the procedures. The ejection fraction showed a slight but significant decrease 5 min after the creation of the channels (60.4 +/- 6.8% vs 54 +/- 7.6%, p=0.02) and recovered at 30min. The segmental motility score of the involved areas increased to 1 after 5 min in five animals, and came back to 0 at 30 min except in one animal. Even with pacing no segmental dysfunction occurred. The reversibility of the segmental hypokinesia induced by TMLR, as well as the absence of pace-induced dysfunction 30 min after the procedure strongly suggest the inocuity of TMLR in this experimental set-up.
Resumo:
AIMS: The aim of this study was to investigate the heritability as well as genetic and environmental correlations of left ventricular (LV) structural and functional traits in complex pedigrees of a Caucasian population. METHODS AND RESULTS: We randomly recruited 459 white European subjects from 52 families (50% women; mean age 45 years). LV structure was measured by M-mode and 2D echocardiography and LV function was measured by conventional Doppler and tissue Doppler imaging (TDI). Other measurements included blood pressure, anthropometric, and biochemical measurements. We estimated the heritability of LV traits while adjusting for covariables, including sex, age, body height and weight, systolic and diastolic blood pressures, and heart rate. With full adjustment, heritability of LV mass was 0.23 (P= 0.025). The TDI-derived mitral annular velocities Ea and Aa showed moderate heritability (h(2)= 0.36 and 0.53, respectively), whereas the mitral inflow A peak had weak heritability (h(2) = 0.25) and the E peak was not heritable (h(2) = 0.11). We partitioned the total phenotypic correlation when it reached significance, into a genetic and an environmental component. The genetic correlations were 0.61 between the E and Ea peaks and 0.90 between the A and Aa peaks. CONCLUSION: Our study demonstrated moderate heritability for LV mass as well as the mitral annular Ea and Aa peaks. We also found significant genetic correlations between the E and Ea peaks and between the A and Aa peaks. Our current findings support the ongoing research to map and detect genetic variants that contribute to the variation in LV mass and other LV structural and functional phenotypes.
Resumo:
BACKGROUND: Although arrhythmogenic right ventricular dysplasia (ARVD) predominantly affects the right ventricle (RV), genetic/molecular and histological changes are biventricular. Regional left ventricular (LV) function has not been systematically studied in ARVD. METHODS AND RESULTS: The study population included 21 patients with suspected ARVD who underwent evaluation with MRI including tagging. Eleven healthy volunteers served as control subjects. Peak systolic regional circumferential strain (Ecc, %) was calculated by harmonic phase from tagged MRI based on the 16-segment model. Patients who met ARVD Task Force criteria were classified as definite ARVD, whereas patients with a positive family history who had 1 additional minor criterion and patients without a family history with 1 major or 2 minor criteria were classified as probable ARVD. Of the 21 ARVD subjects, 11 had definite ARVD and 10 had probable ARVD. Compared with control subjects, probable ARVD patients had similar RV ejection fraction (58.9+/-6.2% versus 53.5+/-7.6%, P=0.20), but definite ARVD patients had significantly reduced RV ejection fraction (58.9+/-6.2% versus 45.2+/-6.0%, P=0.001). LV ejection fraction was similar in all 3 groups. Compared with control subjects, peak systolic Ecc was significantly less negative in 6 of 16 (37.5%) segments in definite ARVD and 3 of 16 segments (18.7%) in probable ARVD (all P<0.05). CONCLUSIONS: ARVD is associated with regional LV dysfunction, which appears to parallel degree of RV dysfunction. Further large studies are needed to validate this finding and to better define implications of subclinical segmental LV dysfunction.
Resumo:
Left ventricular hypertrophy (LVH) is an early complication of hypertension. To a certain degree, this process counteracts the parietal stress induced by high blood pressure. Genetic factors, obesity, high salt diet and different growth factors, notably angiotensin II and noradrenaline, can also predispose to hypertrophic cardiomyopathy. Left ventricular mass is increased on echocardiography in about 20% of hypertensive subjects. LVH is initially associated with a change in myocardial diastolic function and later with abnormal systolic function. It is a major risk factor, a cause of cardiac failure, reduction in coronary reserve and of ventricular arrhythmias. Treatment of hypertension is associated with regression of LVH and preservation or improvement in myocardial diastolic and systolic functions. The decrease in left ventricular mass could reduce the incidence of cardiovascular complications in hypertension.
Resumo:
The time-lag between coronary occlusion and irreversible damage to the myocardium is ill-defined in man. In 10 patients the changes in left ventricular function have been studied after coronary occlusion during diagnostic or therapeutic cardiac catheterization of 1-2 hours' duration. Revascularization was achieved either surgically or through intracoronary streptokinase infusion. The interval between occlusion and onset of extracorporal circulation or reopening was 61 to 119 minutes. Despite enzyme elevation (CPK, CK-MB, SGOT) and appearance of Q-waves in 5 patients, no significant alteration of left ventricular function was noted on repeat cardiac catheterization 10 to 230 days after the accident. These observations, suggest that coronary occlusion of 1-2 hours' duration fails to produce significant irreversible damage to the myocardium despite electrocardiographic and enzymatic signs of myocardial infarction.
Resumo:
Objective: Previous studies reported on the association of left ventricular mass index (LVMI) with urinary sodium or with circulating or urinary aldosterone.We investigated the independent associations of LVMI with the urinary excretion of both sodium and aldosterone. Design and method: We randomly recruited 317 untreated subjects from a White population (45.1%women; mean age 48.2 years).Measurements included echocardiographic left ventricular (LV) properties, the 24 h urinary excretion of sodium and aldosterone, plasma renin activity (PRA), and proximal (RNaprox) and distal (RNadist) renal sodium reabsorption, assessed fromthe endogenous lithium clearance. Inmultivariable-adjusted models,we expressed changes in LVMI per 1 SD increase in the explanatory variables, while accounting for sex, age, systolic blood pressure and the waist-to-hip ratio. Results: LVMI increased independentlywith the urinary excretion of both sodium (+2.48 g/m2; P=0.005) and aldosterone (+2.63 g/m2; P=0.004). Higher sodium excretion was associated with increased mean wall thickness (MWT: +0.126 mm, P=0.054), but with no change in LV end-diastolic diameter (LVID: +0.12mm, P=0.64). In contrast, higher aldosterone excretion was associated with higher LVID (+0.54 mm; P=0.017), but with no change in MWT (+0.070mm; P=0.28).Higher RNadistwas associatedwith lower relativewall thickness (−0.81×10−2, P=0.017), because of opposite trends in LVID(+0.33 mm; P=0.13) and MWT (−0.130mm; P=0.040). LVMI was not associated with PRA or RNaprox. Conclusions: LVMI independently increased with both urinary sodium and aldosterone excretion. IncreasedMWT explained the association of LVMI with urinary sodium and increased LVID the association of LVMI with urinary aldosterone.
Resumo:
BACKGROUND: Determining a specific death cause may facilitate individualized therapy in patients with heart failure (HF). Cardiac resynchronization therapy (CRT) decreased mortality in the Cardiac Resynchronization in Heart Failure trial by reducing pump failure and sudden cardiac death (SCD). This study analyzes predictors of specific causes of death. METHODS AND RESULTS: Univariate and multivariate analyses used 8 baseline and 3-month post-randomization variables to predict pump failure and SCD (categorized as "definite," "probable," and "possible"). Of 255 deaths, 197 were cardiovascular. There were 71 SCDs with a risk reduction by CRT of 0.47 (95% confidence interval 0.29-0.76; P = .002) with similar reductions in SCD classified as definite, probable, and possible. Univariate SCD predictors were 3-month HF status (mitral regurgitation [MR] severity, plasma brain natriuretic peptide [BNP], end-diastolic volume, and systolic blood pressure), whereas randomization to CRT decreased risk. Multivariate SCD predictors were randomization to CRT 0.56 (0.53-0.96, P = .035) and 3-month MR severity 1.82 (1.77-2.60, P = .0012). Univariate pump failure death predictors related to baseline HF state (quality of life score, interventricular mechanical delay, end-diastolic volume, plasma BNP, MR severity, and systolic pressure), whereas randomization to CRT and nonischemic cardiomyopathy decreased risk; multivariate predictors of pump failure death were baseline plasma BNP and systolic pressure and randomization to CRT. CONCLUSION: CRT decreased SCD in patients with systolic HF and ventricular dyssynchrony. SCD risk was increased with increased severity of MR (including the 3-month value for MR as a time-dependent covariate) and reduced by randomization to CRT. HF death was increased related to the level of systolic blood pressure, log BNP, and randomization to CRT. These results emphasize the importance and interdependence of HF severity to mortality from pump failure and SCD.