949 resultados para LEAD-ZIRCONATE-TITANATE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O processo de retificação é considerado um dos últimos na cadeia de produção de peças de precisão. Assim, é essencial ter um sistema de monitoramento confiável para este processo. Neste trabalho é proposto um sistema de medição de vibração, rápido e versátil, baseado na plataforma de prototipagem eletrônica de hardware livre Arduino, com objetivo de monitorar em tempo real o processo de retificação plana, especialmente no que diz respeito à condição da peça retificada. Para este trabalho ensaios experimentais foram realizados numa máquina retificadora plana, empregando um rebolo de óxido de alumínio e uma peça de aço ABNT 1020. Por meio de um sensor piezelétrico de PZT (Pb-Lead Zirconate Titanate) de baixo custo, instalado junto à peça e conectado a uma das portas analógicas do hardware, foi possível medir o sinal de vibração durante o processo de retificação. Verificou-se que, a medida com que o rebolo perdia sua capacidade de corte, em função das consecutivas passadas sobre a peça, ocorria também uma significativa diminuição dos valores médios do sinal de vibração. Tal diminuição do sinal de vibração pode indicar o momento que o rebolo deve ser dressado, permitindo monitorar a qualidade superficial da peça durante o processo de retificação, evitando danos como é o caso da queima superficial. O princípio de operação e as principais características dessa técnica foram investigados, bem como algumas de suas limitações práticas.
Resumo:
This work presents a comprehensive study about the influence of Ba-substitution on the structural and ferroelectric properties of Pb1-xBaxZr0.40Ti0.60O3 (PBZT) ceramic system. Pb1-xBaxZr0.40Ti0.60O3 ceramic samples were then prepared by solid state reaction method and characterized as a function of composition and temperature by X-ray diffraction (XRD) and impedance spectroscopy techniques. The dielectric measurements show that the substitution of Pb2+ for Ba2+ ions leads to a diffuse behavior of the dielectric permittivity curves for all samples and that only the x = 0.50 sample presents a typical relaxor behavior. In good agreement with dielectric measurements, the structural phase transition study showed a phase transition from a tetragonal structure with P4mm space group to a cubic structure with Pm-3m space group for all samples, except for the x = 0.50 sample were a cubic structure was observed in the complete temperature interval measured.
Resumo:
The knowledge of electronic and local structures is a fundamental step towards understanding the properties of ferroelectric ceramics. X-ray absorption near-edge structure (XANES) of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric samples was measured in order to know how the local order and electronic structure are related to their ferroelectric property, which was tailored by the substitution of lead by lanthanum atoms. The analysis of XANES spectra collected at Ti K- and L-edges XANES showed that the substitution of Pb by La leads to a decrement of local distortion around Ti atoms on the TiO6 octahedron. The analysis of O K-edge XANES spectra showed that the hybridization between O 2p and Pb 6sp states is related to the displacement of Ti atoms in the TiO6 octahedra. Based on these results, it is possible to determine that the degree of ferroelectricity in these samples and the manifestation of relaxor behavior are directly related to the weakening of O 2p and Pb 6sp hybridization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720472]
Resumo:
Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.
As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.
(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.
(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.
(3) Li. M. et al. Nature Materials 2013, 13, 31.
Resumo:
The standard “Kittel Law” for the thickness and shape of ferroelectric, ferroelastic, or ferromagnet domains assumes mechanical equilibrium. The present paper shows that such domains may be highly nonequilibrium, with unusual thicknesses and shapes. In lead germanate and multiferroic lead zirconate titanate iron tantalate domain wall instabilities resemble hydrodynamics (Richtmyer–Meshkov and Helfrich–Hurault, respectively).
Resumo:
The use of energy harvesting materials for large infrastructure is a promising and growing field. In this regard, the use of such harvesters for the purpose of structural health monitoring of bridges has been proposed in recent times as one of the feasible options since the deployment of them can remove the necessity of an external power source. This paper addresses the performance issue of such monitors over the life-cycle of a bridge as it deteriorates and the live load on the structure increases. In this regard, a Lead Zirconate Titanate (PZT) material is considered as the energy harvesting material and a comparison is carried out over the operational life of a reinforced concrete bridge. The evolution of annual average daily traffic (AADT) is taken into consideration, as is the degradation of the structure over time, due to the effects of corrosion. Evolution of such harvested energy is estimated over the life-cycle of the bridge and the sensitivity of harvested energy is investigated for varying rates of degradation and changes in AADT. The study allows for designing and understanding the potential of energy harvesters as a health monitor for bridges. This paper also illustrates how the natural growth of traffic on a bridge over time can accentuate the identification of damage, which is desirable for an ageing structure. The paper also assesses the impact and effects of deployment of harvesters in a bridge as a part of its design process, considering performance over the entire life-cycle versus a deployment at a certain age of the structure.
Resumo:
Niobium-modified lead zirconate stannate titanate antiferroelectric thin films with the chemical composition of (Pb0.99Nb0.02)(Zr0.57Sn0.38Ti0.05)0.98O3 were deposited by pulsed excimer laser ablation technique on Pt-coated Si substrates. Field-induced phase transition from antiferroelectric to ferroelectric properties was studied at different fields as a function of temperature. The field forced ferroelectric phase transition was elucidated by the presence of double-polarization hysteresis and double-butterfly characteristics from polarization versus applied electric field and capacitance and voltage measurements, respectively. The measured forward and reverse switching fields were 25 kV/cm and 77 kV/cm, respectively. The measured dielectric constant and dissipation factor were 540 and 0.001 at 100 kHz, respectively, at room temperature.
Resumo:
采用具有高二次电光效应的掺镧锆钛酸铅陶瓷材料(PLZT),设计和制备了一种基于折射率随外加电压发生变化的电光偏转器。构建了测试系统,测得PLZT的电光系数是R33=2.1
Resumo:
基于掺镧锆钛酸铅(PLZT)电光陶瓷材料的光学特性,提出了一种具有上下电极结构的光学相控阵高速光束扫描器。在理论上,分析了具有这种结构的光学相控阵的光束电光偏转特性和机制;在实验上,分析了掺镧锆钛酸铅材料的相位调制特性和损耗特性,制作了相关的光学相控阵器件,并构建了相应的测试系统,获得了光束在空间的角度偏转,与理论分析结果相符。
Resumo:
综述了基于电光材料的光学相控阵(OPA)的研究进展。介绍了光学相控阵技术的基本原理以及不同电光材料(铌酸锂电光晶体,AlGaAs光波导,液晶和掺镧锆钛酸铅(PLZT)电光陶瓷)光学相控阵技术的基本构想和涉及的关键技术;着重介绍近年来基于PLZT电光陶瓷材料光学相控阵技术的发展情况以及在这方面的最新研究成果,包括单级相控阵、级联相控阵、不同电极结构(表面电极和上下电极结构)相控阵技术等;最后简要介绍了光学相控阵技术在激光雷达等军事领域中的应用。