993 resultados para LAYER ADSORPTION
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
Die Kapillarkraft entsteht durch die Bildung eines Meniskus zwischen zwei Festkörpen. In dieser Doktorarbeit wurden die Auswirkungen von elastischer Verformung und Flϋssigkeitadsorption auf die Kapillarkraft sowohl theoretisch als auch experimentell untersucht. Unter Verwendung eines Rasterkraftmikroskops wurde die Kapillarkraft zwischen eines Siliziumoxid Kolloids von 2 µm Radius und eine weiche Oberfläche wie n.a. Polydimethylsiloxan oder Polyisopren, unter normalen Umgebungsbedingungen sowie in variierende Ethanoldampfdrϋcken gemessen. Diese Ergebnisse wurden mit den Kapillarkräften verglichen, die auf einem harten Substrat (Silizium-Wafer) unter denselben Bedingungen gemessen wurden. Wir beobachteten eine monotone Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck (P) fϋr P/Psat > 0,2, wobei Psat der Sättigungsdampfdruck ist.rnUm die experimentellen Ergebnisse zu erklären, wurde ein zuvor entwickeltes analytisches Modell (Soft Matter 2010, 6, 3930) erweitert, um die Ethanoladsorption zu berϋcksichtigen. Dieses neue analytische Modell zeigte zwei verschiedene Abhängigkeiten der Kapillarkraft von P/Psat auf harten und weichen Oberflächen. Fϋr die harte Oberfläche des Siliziumwafers wird die Abhängigkeit der Kapillarkraft vom Dampfdruck vom Verhältnis der Dicke der adsorbierten Ethanolschicht zum Meniskusradius bestimmt. Auf weichen Polymeroberflächen hingegen hängt die Kapillarkraft von der Oberflächenverformung und des Laplace-Drucks innerhalb des Meniskus ab. Eine Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck hat demnach eine Abnahme des Laplace-Drucks mit zunehmendem Meniskusradius zur folge. rnDie analytischen Berechnungen, fϋr die eine Hertzsche Kontakt-deformation angenommen wurde, wurden mit Finit Element Methode Simulationen verglichen, welche die reale Deformation des elastischen Substrats in der Nähe des Meniskuses explizit berϋcksichtigen. Diese zusätzliche nach oben gerichtete oberflächenverformung im Bereich des Meniskus fϋhrt zu einer weiteren Erhöhung der Kapillarkraft, insbesondere fϋr weiche Oberflächen mit Elastizitätsmodulen < 100 MPa.rn
Resumo:
The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The clinical use of an enamel matrix derivative (EMD) has been shown to promote formation of new cementum, periodontal ligament (PDL), and bone and to significantly enhance the clinical outcomes after regenerative periodontal surgery. It is currently unknown to what extent the bleeding during periodontal surgery may compete with EMD adsorption to root surfaces. The aim of this study is to evaluate the effect of blood interactions on EMD adsorption to root surfaces mimicking various clinical settings and to test their ability to influence human PDL cell attachment and proliferation. Methods: Teeth extracted for orthodontic reasons were subjected to ex vivo scaling and root planing and treated with 24% EDTA, EMD, and/or human blood in six clinically related settings to determine the ability of EMD to adsorb to root surfaces. Surfaces were analyzed for protein adsorption via scanning electron microscopy and immunohistochemical staining with an anti-EMD antibody. Primary human PDL cells were seeded on root surfaces and quantified for cell attachment and cell proliferation. Results: Plasma proteins from blood samples altered the ability of EMD to adsorb to root surfaces on human teeth. Samples coated with EMD lacking blood demonstrated a consistent even layer of EMD adsorption to the root surface. In vitro experiments with PDL cells demonstrated improved cell attachment and proliferation in all samples coated with EMD (irrespective of EDTA) when compared to samples containing human blood. Conclusion: Based on these findings, it is advised to minimize blood interactions during periodontal surgeries to allow better adsorption of EMD to root surfaces.
Resumo:
We have studied the adsorption of two structurally similar forms of hemoglobin (met-Hb and HbCO) to a hydrophobic self-assembled methyl-terminated thiol monolayer on a gold surface, by using a Quartz Crystal Microbalance (QCM) technique. This technique allows time-resolved simultaneous measurements of changes in frequency (f) (c.f. mass) and energy dissipation (D) (c.f. rigidity/viscoelastic properties) of the QCM during the adsorption process, which makes it possible to investigate the viscoelastic properties of the different protein layers during the adsorption process. Below the isoelectric points of both met-Hb and HbCO, the ΔD vs. Δf graphs displayed two phases with significantly different slopes, which indicates two states of the adsorbed proteins with different visco-elastic properties. The slope of the first phase was smaller than that of the second phase, which indicates that the first phase was associated with binding of a more rigidly attached, presumably denatured protein layer, whereas the second phase was associated with formation of a second layer of more loosely bound proteins. This second layer desorbed, e.g., upon reduction of Fe3+ of adsorbed met-Hb and subsequent binding of carbon monoxide (CO) forming HbCO. Thus, the results suggest that the adsorbed proteins in the second layer were in a native-like state. This information could only be obtained from simultaneous, time-resolved measurements of changes in both D and f, demonstrating that the QCM technique provides unique information about the mechanisms of protein adsorption to solid surfaces.
Resumo:
In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.
Resumo:
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.
Resumo:
In this paper, we study the effect of solid surface mediation on the intermolecular potential energy of nitrogen, and its impact on the adsorption of nitrogen on a graphitized carbon black surface and in carbon slit-shaped pores. This effect arises from the lower effective interaction potential energy between two particles close to the surface compared to the potential energy of the same two particles when they are far away from the surface. A simple equation is proposed to calculate the reduction factor and this is used in the Grand Canonical Monte Carlo (GCMC) simulation of nitrogen adsorption on graphitized thermal carbon black. With this modification, the GCMC simulation results agree extremely well with the experimental data over a wide range of pressure; the simulation results with the original potential energy (i.e. no surface mediation) give rise to a shoulder in the neighbourhood of monolayer coverage and a significant over-prediction of the second and higher layer coverages. The influence of this surface mediation on the dependence of the pore-filling pressure on the pore width is also studied. It is shown that such surface mediation has a significant effect on the pore-filling pressure. This implies that the use of the local isotherms obtained from the potential model without surface mediation could give rise to a serious error in the determination of the pore-size distribution.
Resumo:
In this paper, we study the surface heterogeneity and the surface mediation on the intermolecular potential energy for nitrogen adsorption on graphitized thermal carbon black (GTCB). The surface heterogeneity is modeled as the random distribution of effective carbonyl functional groups on the graphite surface. The molecular parameters and the discrete charges of this carbonyl group are taken from Jorgensen, et al. (J. Am. Chem. Soc., (1984) 106, 6638) while those for nitrogen (dispersive parameters and discrete charges) are taken from Murthy et al. (Mol. Phys., (1983) 50, 531) in our Grand Canonical Monte Carlo (GCMC) simulation. The solid surface mediation in the reduction of intermolecular potential energy between two fluid molecules was taken from a recent work by Do et al. (Langmuir, (2004) 20, 7623). Our simulation results accounting for the surface heterogeneity and surface mediation on intermolecular potential energy were compared with the experimental data of nitrogen at 77 and 90 K. The solid-fluid dispersive parameters are determined from the Lorentz-Berthelot (LB) rule. The fraction of the graphite surface covered with carbonyl functional groups was then derived from the consideration of the Henry constant, and for the data of Kruk et al. (Langmuir, (1999) 15, 1435) we have found that 1% of their GTCB surface is covered with effective carbonyl functional groups. The damping constant, due to surface mediation, was determined from the consideration of the portion of the adsorption isotherm where the first layer is being completed, and it was found to take a value of 0.0075. With these parameters, we have found that the GCMC simulation results describe the data over the complete range of pressure substantially better than any other MC models in the literature. The implication of this work is demonstrated with local adsorption isotherms of 10 and 20 A slit pores. One was obtained without allowance for surface mediation, while the other correctly accounts for these factors. The two local isotherms differ substantially, and the implication is that if we used incorrect local isotherms (i.e. without the surface mediation) the pore size distribution would be incorrectly derived.
Adsorption of argon on homogeneous graphitized thermal carbon black and heterogeneous carbon surface
Resumo:
In this paper we investigate the effects of surface mediation on the adsorption behavior of argon at different temperatures on homogeneous graphitized thermal carbon black and on heterogeneous nongraphitized carbon black surface. The grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption, and its performance is tested against a number of experimental data on graphitized thermal carbon black (which is known to be highly homogeneous) that are available in the literature. The surface-mediation effect is shown to be essential in the correct description of the adsorption isotherm because without accounting for that effect the GCMC simulation results are always greater than the experimental data in the region where the monolayer is being completed. This is due to the overestimation of the fluid–fluid interaction between particles in the first layer close to the solid surface. It is the surface mediation that reduces this fluid–fluid interaction in the adsorbed layers, and therefore the GCMC simulation results accounting for this surface mediation that are presented in this paper result in a better description of the data. This surface mediation having been determined, the surface excess of argon on heterogeneous carbon surfaces having solid–fluid interaction energies different from the graphite can be readily obtained. Since the real heterogeneous carbon surface is not the same as the homogeneous graphite surface, it can be described by an area distribution in terms of the well depth of the solid–fluid energy. Assuming a patchwise topology of the surface with patches of uniform well depth of solid–fluid interaction, the adsorption on a real carbon surface can be determined as an integral of the local surface excess of each patch with respect to the differential area. When this is matched against the experimental data of a carbon surface, we can derive the area distribution versus energy and hence the geometrical surface area. This new approach will be illustrated with the adsorption of argon on a nongraphitized carbon at 87.3 and 77 K, and it is found that the GCMC surface area is different from the BET surface area by about 7%. Furthermore, the description of the isotherm in the region of BET validity of 0.06 to 0.2 is much better with our method than with the BET equation.
Resumo:
GCMC simulations are applied to the adsorption of sub-critical ammonia on graphitized carbon black at 240 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amount adsorbed for different carbonyl configurations at low pressure (P < 10kPa). Once a single layer is formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms are qualitatively similar to the few experimental isotherms available in the literature for ammonia on highly graphitized carbon black. The mode of adsorption up to monolayer coverage is exhaustively shown to be two-dimensional clustering using various techniques. A comparison between experiment and simulation isosteric heats shows that a surface without functional groups cannot reproduce the experimental isosteric heats of adsorption, even comparing with the experimental results of carbon black heat treated at 3373 K. The addition of carbonyls produces isosteric heats with similar features to those in the literature if the separation between the carbonyls is small.
Resumo:
We model nongraphitized carbon black surfaces and investigate adsorption of argon on these surfaces by using the grand canonical Monte Carlo simulation. In this model, the nongraphitized surface is modeled as a stack of graphene layers with some carbon atoms of the top graphene layer being randomly removed. The percentage of the surface carbon atoms being removed and the effective size of the defect ( created by the removal) are the key parameters to characterize the nongraphitized surface. The patterns of adsorption isotherm and isosteric heat are particularly studied, as a function of these surface parameters as well as pressure and temperature. It is shown that the adsorption isotherm shows a steplike behavior on a perfect graphite surface and becomes smoother on nongraphitized surfaces. Regarding the isosteric heat versus loading, we observe for the case of graphitized thermal carbon black the increase of heat in the submonolayer coverage and then a sharp decline in the heat when the second layer is starting to form, beyond which it increases slightly. On the other hand, the isosteric heat versus loading for a highly nongraphitized surface shows a general decline with respect to loading, which is due to the energetic heterogeneity of the surface. It is only when the fluid-fluid interaction is greater than the surface energetic factor that we see a minimum-maximum in the isosteric heat versus loading. These simulation results of isosteric heat agree well with the experimental results of graphitization of Spheron 6 (Polley, M. H.; Schaeffer, W. D.; Smith, W. R. J. Phys. Chem. 1953, 57, 469; Beebe, R. A.; Young, D. M. J. Phys. Chem. 1954, 58, 93). Adsorption isotherms and isosteric heat in pores whose walls have defects are also studied from the simulation, and the pattern of isotherm and isosteric heat could be used to identify the fingerprint of the surface.
Resumo:
Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.
Resumo:
The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.
Resumo:
The performance of intermolecular potential models on the adsorption of benzene on graphitized thermal carbon black at various temperatures is investigated. Two models contain only dispersive sites, whereas the other two models account explicitly for the dispersive and electrostatic sites. Using numerous data in the literature on benzene adsorption on graphitized thermal carbon black at various temperatures, we have found that the effect of surface mediation on interaction between adsorbed benzene molecules must be accounted for to describe correctly the adsorption isotherm as well as the isosteric heat. Among the two models with partial charges tested, the WSKS model of Wick et at. I that has only six dispersive sites and three discrete partial charges is better than the very expensive all-atom model of Jorgensen and Severance.(2) Adsorbed benzene molecules on graphitized thermal carbon black have a complex orientation with respect to distance from the surface and also with respect to loading. At low loadings, they adopt the parallel configuration relative to the graphene surface, whereas at higher loadings (still less than monolayer coverage) some molecules adopt a slant orientation to maximize the fluid-fluid interaction. For loadings in the multilayer region, the orientation of molecules in the first layer is influenced by the presence of molecules in the second layer. The data that are used in this article come from the work of Isirikyan and Kiselev,(3) Pierotti and Smallwood,(4) Pierce and Ewing,(5) Belyakova, Kiselev, and Kovaleva,(6) and Carrott et al.(7)