999 resultados para LANGERHANS CELLS
Resumo:
Streptozotocin injection in animals destroys pancreatic beta cells, leading to insulinopenic diabetes. Here, we evaluated the toxic effect of streptozotocin (STZ) in GLUT2(-/-) mice reexpressing either GLUT1 or GLUT2 in their beta cells under the rat insulin promoter (RIPG1 x G2(-/-) and RIPG2 x G2(-/-) mice, respectively). We demonstrated that injection of STZ into RIPG2 x G2(-/-) mice induced hyperglycemia (>20 mM) and an approximately 80% reduction in pancreatic insulin content. In vitro, the viability of RIPG2 x G2(-/-) islets was also strongly reduced. In contrast, STZ did not induce hyperglycemia in RIPG1 x G2(-/-) mice and did not reduce pancreatic insulin content. The viability of in vitro cultured RIPG1 x G2(-/-) islets was also unaffected by STZ. As islets from each type of transgenic mice were functionally indistinguishable, these data strongly support the notion that STZ toxicity toward beta cells depends on the expression of GLUT2.
Resumo:
Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.
Resumo:
Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.
Resumo:
The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca(2+)-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic beta-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The beta-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and beta-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in beta-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in beta-cells in the control of the stimulated-exocytosis of insulin.
Resumo:
Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in beta-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet alpha-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in beta-cells and not in alpha-cells. Receptor activity, measured as cellular cAMP production after exposing islet beta-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified alpha-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in beta-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat beta-cells causes cAMP production required for insulin release, while adenylate cyclase in alpha-cells is positively regulated by GIP.
Resumo:
GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.
Resumo:
OBJECTIVE: The pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) generates pancreatic beta-cells apoptosis mainly through activation of the c-Jun NH(2)-terminal kinase (JNK) pathway. This study was designed to investigate whether the long-acting agonist of the hormone glucagon-like peptide 1 (GLP-1) receptor exendin-4 (ex-4), which mediates protective effects against cytokine-induced beta-cell apoptosis, could interfere with the JNK pathway. RESEARCH DESIGN AND METHODS: Isolated human, rat, and mouse islets and the rat insulin-secreting INS-1E cells were incubated with ex-4 in the presence or absence of IL-1 beta. JNK activity was assessed by solid-phase JNK kinase assay and quantification of c-Jun expression. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Ex-4 inhibited induction of the JNK pathway elicited by IL-1 beta. This effect was mimicked with the use of cAMP-raising agents isobutylmethylxanthine and forskolin and required activation of the protein kinase A. Inhibition of the JNK pathway by ex-4 or IBMX and forskolin was concomitant with a rise in the levels of islet-brain 1 (IB1), a potent blocker of the stress-induced JNK pathway. In fact, ex-4 as well as IBMX and forskolin induced expression of IB1 at the promoter level through cAMP response element binding transcription factor 1. Suppression of IB1 levels with the use of RNA interference strategy impaired the protective effects of ex-4 against apoptosis induced by IL-1 beta. CONCLUSIONS: The data establish the requirement of IB1 in the protective action of ex-4 against apoptosis elicited by IL-1 beta and highlight the GLP-1 mimetics as new potent inhibitors of the JNK signaling induced by cytokines.
Resumo:
IB1/JIP-1 is a scaffold protein that interacts with upstream components of the c-Jun N-terminal kinase (JNK) signaling pathway. IB1 is expressed at high levels in pancreatic beta cells and may therefore exert a tight control on signaling events mediated by JNK in these cells. Activation of JNK by interleukin 1 (IL-1beta) or by the upstream JNK constitutive activator DeltaMEKK1 promoted apoptosis in two pancreatic beta cell lines and decreased IB1 content by 50-60%. To study the functional consequences of the reduced IB1 content in beta cell lines, we used an insulin-secreting cell line expressing an inducible IB1 antisense RNA that lead to a 38% IB1 decrease. Reducing IB1 levels in these cells increased phosphorylation of c-Jun and increased the apoptotic rate in presence of IL-1beta. Nitric oxide production was not stimulated by expression of the IB1 antisense RNA. Complementary experiments indicated that overexpression of IB1 in insulin-producing cells prevented JNK-mediated activation of the transcription factors c-Jun, ATF2, and Elk1 and decreased IL-1beta- and DeltaMEKK1-induced apoptosis. These data indicate that IB1 plays an anti-apoptotic function in insulin-producing cells probably by controlling the activity of the JNK signaling pathway.
Resumo:
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.
Resumo:
In adipocytes and muscle cells, the GLUT4 glucose transporter isoform is present in intracellular vesicles which continuously recycle between an intracytoplasmic location and the plasma membrane. It is not clear whether the GLUT4-vesicles represent a specific kind of vesicle or resemble typical secretory granules or synaptic-like microvesicles. To approach this question, we expressed GLUT4 in the beta cell line RINm5F and determined its intracellular localization by subcellular fractionation and by immunofluorescence and immunoelectron microscopy. GLUT4 was not found in insulin granules but was associated with a subpopulation of smooth-surface vesicles present in the trans-Golgi region and in vesicular structures adjacent to the plasma membrane. In the trans-Golgi region, GLUT4 did not colocalize with synaptophysin or TGN38. Incubation of the cells with horseradish peroxidase (HRP) led to colocalization of HRP and GLUT4 in some endosomal structures adjacent to the plasma membrane and in occasional trans-Golgi region vesicles. When cells were incubated in the presence of Bafilomycin A, analysis by confocal microscopy revealed GLUT4 in numerous large spots present throughout the cytoplasm, many of which costained for TGN38 and synaptophysin. By immunoelectron microscopy, numerous endosomes were observed which stained strongly for GLUT4. Together our data demonstrate that ectopic expression of GLUT4 in insulinoma cells reveals the presence of a subset of vesicular structures distinct from synaptic-like vesicles and insulin secretory granules. Furthermore, they indicate that GLUT4 constitutively recycles between the plasma membrane and its intracellular location by an endocytic route also taken by TGN38 and synaptophysin.
Resumo:
Langerhans' cell histiocytosis (LCH) is a rare and enigmatic clonal disorder that affects mainly children. It is characterized by single or multiple granulomatous mass lesions composed of cells with the Langerhans' cell phenotype. Clinical presentation and behavior are heterogeneous and can range from a solitary lytic bone lesion (i.e., eosinophilic granuloma) with a favorable course to a fatal disseminated leukaemia-like form, with a wide spectrum of intermediate clinical presentations between these two extremes. Although LCH typically involves the bone, lesions can be found in almost all organs. We are reporting the case of a multisystem LCH in a 47-year-old patient who presented with a panhypopituitarism and diabetes insipidus, and who, 5 years later, developed mandibular, mastoid and femoral lesions. The final diagnosis of LCH was made on mandibular biopsy.
Resumo:
Introduction: La préservation et/ou l'expansion de la masse des cellules ß pourraient constituer des approches prometteuses dans le traitement du diabète. L'une des stratégies clés serait de réduire l'apoptose des cellules ß. Le chloride intracellular channel protein 4 (Clic4) est une protéine exprimée de manière ubiquitaire et supposée agir dans de nombreux processus cellulaires tels que le contrôle du cycle cellulaire, la différenciation cellulaire et l'apoptose. Ici, nous avons étudié le rôle de Clic4 dans l'apoptose des cellules ß pancréatiques en utilisant des cellules ßTC-tet et des îlots de Langerhans issus de souris knockout pour Clic4 (ßClic4KO). Résultats: L'expression de l'ARNm et de la protéine Clic4 était augmentée par un traitement aux cytokines dans les cellules ßTC-tet et encore plus fortement dans des îlots isolés de souris. De plus, la sous-expression de Clic4 dans les cellules ßTC-tet diminuait leur sensibilité à l'apoptose induite par les cytokines. La sous-expression de Clic4 dans les cellules ßTC-tet n'affectait pas l'expression des ARNm de Bcl-2 et Bad, mais augmentait leur expression protéique ainsi que la forme phosphorylée de Bad. Les mêmes résultats ont été obtenus sur des îlots isolés de souris contrôles et ßClic4KO. De plus, les îlots issus de souris ßClic4KO présentaient une augmentation de l'expression de la protéine Bcl-xL. Dans le but de déterminer si Clic4 augmentait l'expression de Bcl-2 et Bad via une interaction protéique directe, nous avons immunoprécipité Clic4 à partir de cellules ßTC-tet à l'aide d'anticorps dirigés contre la partie C- ou N-terminale de la protéine, puis nous avons soumis les immunoprécipités à une analyse de spectrométrie de masse. Aucune co- immunoprécipitation avec Bcl-2 ou d'autres protéines de la famille Bcl-2 n'a été détectée. Cependant, de manière intéressante, Clic4 était co-purifié avec plusieurs protéines du protéasome suggérant un rôle de Clic4 dans la dégradation des protéines. Par conséquent, nous avons étudié la demi-vie de Bcl-2 et Bad, et avons observé que la sous-expression de Clic4 dans les cellules ßTC-tet augmentait la demi-vie de ces protéines. De plus, l'expression de l'ARNm et de la protéine Clic4 était également augmentée lors d'un stress du réticulum endoplasmique induit par la thapsigargine dans les cellules ßTC-tet. La sous-expression de Clic4 dans les cellules ßTC-tet ou chez les KO diminuait la sensibilité des cellules ß à l'apoptose induite par la thapsigargine ou l'acide palmitique, respectivement. Conclusion: Ces résultats suggèrent que Clic4 sensibilise les cellules ß à l'apoptose induite par les cytokines ou l'acide palmitique/thapsigargine (stress du réticulum endoplasmique). De plus, la sous-expression de Clic4 améliore la survie des cellules ß en diminuant la dégradation de Bcl-2 et Bcl-xL, et en augmentant le niveau total de Bad phosphorylé, peut-être suite à une interaction de Clic4 avec le protéasome.
Resumo:
La transplantation d’îlots chez des sujets diabétiques permet la normalisation de leur glycémie mais nécessite l’utilisation d’immunosuppresseurs. Afin d’éliminer l’utilisation de ceux-ci, une capsule d’alginate capable d’immunoprotéger l’îlot a été proposée. Cependant, un problème persiste : la survie de l’implant est limitée. Deux moyens afin d’améliorer ce facteur seront présentés dans ce mémoire: l’utilisation d’alginate purifié et la co-encapsulation des îlots avec des cellules canaliculaires pancréatiques. La première étude rapporte un aspect nouveau : les effets directs de l’alginate non-purifié, versus purifié, sur la survie d’îlots encapsulés. Ceci est démontré in vitro sur la viabilité à long terme des îlots, leur fonction et l’incidence de leur mort cellulaire par apoptose et nécrose. Ces investigations ont permis de conclure que l’alginate purifié permet de maintenir à long terme une meilleure survie et fonction des îlots. De plus, cette étude ajoute un autre rôle aux contaminants de l’alginate en plus de celui d’initier la réaction immunitaire de l’hôte; celle-ci étant indirectement reliée à la mort des îlots encapsulés. La deuxième étude consiste à déterminer les impacts possibles d’une co-encapsulation d’îlots de Langerhans avec des cellules canaliculaires pancréa-tiques. Les résultats obtenus démontrent que cette co-encapsulation n’améliore pas la survie des îlots microencapsulés, par des tests de viabilité et de morts cellulaires, ni leur fonction in vivo testée par des implantations chez un modèle murin immmunodéficient. Pour conclure, la survie des îlots encapsulés peut être améliorée par la purification de l’alginate mais reste inchangée lors d’une co-encapsulation avec des cellules canaliculaires pancréatiques.