956 resultados para L-ASCORBIC-ACID
Resumo:
L-amino acid oxidases are widely found in snake venoms and are thought to contribute to the toxicity upon envenomation. The mechanism of these toxic effects and whether they result from the enzymatic activity are still uncertain although many papers describing the biological and pharmacological effects of L-amino acid oxidases have appeared recently, which provide more information about their action on platelets, induction of apoptosis, haemorrhagic effects, and cytotoxicity. This review summarizes the physiochemical properties, structural characteristics and various biological functions of snake venom L-amino acid oxidases (SV-LAAOs). In addition, the putative mechanisms of SV-LAAO-induced platelet aggregation and apoptosis of cells are discussed in more detail.
Resumo:
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Resumo:
An L-amino acid oxidase (LAAO), NA-LAAO, was purified from the venom of Naja atra. Its N-terminal sequence shows great similarity with LAAOs from other snake venoms. NA-LAAO dose-dependently induced aggregation of washed human platelets. However, it had no activity on platelets in platelet-rich plasma. A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide, whereas hydrogen peroxide itself had little activation effect on platelets. NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase, spleen tyrosine kinase, and phospholipase Cgamma2. Unlike convulxin, Fc receptor gamma chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO-activated platelets, suggesting an activation mechanism different from the glycoprotein VI pathway. Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO. NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots. Furthermore, affinity chromatography of platelet proteins on an NA-LAAO-Sepharose 4B column isolated a few platelet membrane proteins, suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.
Resumo:
BACKGROUND: Reperfusion injury is the leading cause of early graft dysfunction after lung transplantation. Activation of neutrophilic granulocytes with generation of free oxygen radicals appears to play a key role in this process. The efficacy of ascorbic acid as an antioxidant in the amelioration of reperfusion injury after lung transplantation has not been studied yet. METHODS: An in situ autotransplantation model in sheep is presented. The left lung was flushed (Euro-Collins solution) and reperfused; after 2 hours of cold storage, the right hilus was then clamped (group R [reference], n = 6). Group AA animals (n = 6) were treated with 1 g/kg ascorbic acid before reperfusion. Controls (group C, n = 6) underwent hilar preparation and instrumentation only. RESULTS: In group R, arterio-alveolar oxygen difference (AaDO2) and pulmonary vascular resistance (PVR) were significantly elevated after reperfusion. Five of 6 animals developed frank alveolar edema. All biochemical parameters showed significant PMN activation. In group AA, AaDO2, PVR, work of breathing, and the level of PMN activation were significantly lower. CONCLUSIONS: The experimental model reproduces all aspects of lung reperfusion injury reliably. Ascorbic acid was able to weaken reperfusion injury in this experimental setup.
Resumo:
The SLC43 family is composed of only three genes coding for the plasma membrane facilitator system l amino acid transporters LAT3 (SLC43A1; TC 2.A.1.44.1) and LAT4 (SLC43A2; TC 2.A.1.44.2), and the orphan protein EEG1 (SLC43A3; TC 2.A.1.44.3). Besides the known mechanism of transport of LAT3 and LAT4, their physiological roles still remain quite obscure. Morphants suggested a role of LAT3 in renal podocyte development in zebrafish. Expression in liver and skeletal muscle, and up-regulation by starvation suggest a role of LAT3 in the flux of branched-chain amino acids (BCAAs) from liver and skeletal muscle to the bloodstream. Finally, LAT3 is up-regulated in androgen-dependent cancers, suggesting a role in mTORC1 signaling in this type of tumors. In addition, LAT4 might contribute to the transfer of BCAAs from mother to fetus. Unfortunately, the EEG1 mouse model (EEG1(Y221∗)) described here has not yet offered a clue to the physiological role of this orphan protein.
Resumo:
Vitamin C (ascorbic acid--AA) can have a substantial impact on human health by reducing the incidence and/or severity of coryza. Studies also suggest it has immunomodulatory functions in humans. Immune function is controlled by cytokines, such as type-1 cytokines (IFNγ) that promote antiviral immunity and type-2 cytokines (IL-4, IL-10) that promote humoral immunity. Knowing the mechanisms responsible for both antiviral immunity and type-1/type-2 cytokine balance, we sought to identify AA-induced alterations of human peripheral blood mononuclear cells (PBMC) in vivo and in vitro . We hypothesized that AA modulates the immune system, altering both number and function of PBMC. We first described the effect of 14 days of oral (1 gram) AA in healthy subjects. AA increased circulating natural killer (NK) cells, CD25+ and HLA-DR+ T cells, and PMA/ionomycin-stimulated intracellular IFNγ. We subsequently developed models for in vitro use. We determined that AA was toxic in vitro to T cells when used at doses found intracellularly but doses found in plasma from individuals taking 1gm/day AA were nontoxic. The model that most fully reproduced our in vivo intracellular cytokine findings used dehydroascorbic acid and buffers to deliver AA intracellularly. This model generated the largest increase in IFNγ at physiologic plasma concentrations. Previous studies demonstrate that chronic psychological stress is associated with a type-2 cytokine response. We hypothesized that vitamin C could prevent the type-2 cytokine shift associated with stress. In a study of medical students taking 1 g AA or placebo, a significant increase in IFNγ was seen intracellularly in CD4+ and CD8+ cells and in tetanus-stimulated cultures in the AA group only. We also observed increases in IFNγ/IL-4 and IFNγ/IL-10 ratios with AA supplementation, indicating a type-1 shift. Furthermore, we noted increased numbers of NK cells and activated T cells in the peripheral blood in the AA treated group only. Lastly, we investigated the role of the CD40L/CD40 and CD28/B7 costimulatory pathway in these cytokine alterations. AA did not have any effect on either pathway studied. Thus costimulatory pathways are not contributing to AA induced modulation of the type-1/type-2 immune balance. ^
Resumo:
The use of tungsten disulphide inorganic nanotubes (INT-WS2) offers the opportunity to produce novel and advanced biopolymer-based nanocomposite materials with excellent nanoparticle dispersion without the need for modifiers or surfactants via conventional melt blending. The study of the non-isothermal melt-crystallization kinetics provides a clear picture of the transformation of poly(L-lactic acid) (PLLA) molecules from the non-ordered to the ordered state. The overall crystallization rate, final crystallinity and subsequent melting behaviour of PLLA were controlled by both the incorporation of INT-WS2 and the variation of the cooling rate. In particular, it was shown that INT-WS2 exhibits much more prominent nucleation activity on the crystallization of PLLA than other specific nucleating agents or nano-sized fillers. These features may be advantageous for the enhancement of mechanical properties and process-ability of PLLA-based materials. PLLA/INT-WS2 nanocomposites can be employed as low cost biodegradable materials for many eco-friendly and medical applications, and the exceptional crystallization behaviour observed opens new perspectives for scale-up and broader applications.
Resumo:
The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.
Resumo:
Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.
Resumo:
The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: leaves 47-59.