977 resultados para LÓGICA MODAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A estabilidade de taludes naturais é um tema de grande interesse ao engenheiro geotécnico, face às significativas perdas econômicas, e até mesmo humanas, resultantes da ruptura de taludes. Estima-se que a deflagração de escorregamentos já provocou milhares de mortes, e dezenas de bilhões de dólares em prejuízos anuais em todo o mundo. Os fenômenos de instabilização de encostas são condicionados por muitos fatores, como o clima, a litologia e as estruturas das rochas, a morfologia, a ação antrópica e outros. A análise dos condicionantes geológicos e geotécnicos de escorregamentos proporciona a apreciação de cada um dos fatores envolvidos nos processos de instabilização de encostas, permitindo a obtenção de resultados de interesse, no que diz respeito ao modo de atuação destes fatores. O presente trabalho tem como objetivo a utilização da Lógica Nebulosa (Fuzzy) para criação de um Modelo que, de forma qualitativa, forneça uma previsão do risco de escorregamento de taludes em solos residuais. Para o cumprimento deste objetivo, foram estudados os fatores envolvidos nos processos de instabilização de encostas, e a forma como estes fatores se interrelacionam. Como experiência do especialista para a elaboração do modelo, foi analisado um extenso banco de dados de escorregamentos na cidade do Rio de Janeiro, disponibilizado pela Fundação Geo-Rio. Apresenta-se, neste trabalho, um caso histórico bem documentado para a validação do Modelo Fuzzy e análises paramétricas, realizadas com o objetivo verificar a coerência do modelo e a influência de cada um dos fatores adotados na previsão do risco de escorregamento. Dentre as principais conclusões, destaca-se a potencialidade da lógica nebulosa na previsão de risco de escorregamentos de taludes em solo residual, aparecendo como uma ferramenta capaz de auxiliar na detecção de áreas de risco.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho é avaliar os riscos de ocorrências de intrusos em um sistema de computação em nuvem para sistemas distribuídos utilizando lógica nebulosa. A computação em nuvem é um tema que vem sendo bastante abordado e vem alavancando discussões calorosas, tanto na comunidade acadêmica quanto em palestras profissionais. Embora essa tecnologia esteja ganhando mercado, alguns estudiosos encontram-se céticos afirmando que ainda é cedo para se tirar conclusões. Isto se deve principalmente por causa de um fator crítico, que é a segurança dos dados armazenados na nuvem. Para esta dissertação, foi elaborado um sistema distribuído escrito em Java com a finalidade de controlar um processo de desenvolvimento colaborativo de software na nuvem, o qual serviu de estudo de caso para avaliar a abordagem de detecção de intrusos proposta. Este ambiente foi construído com cinco máquinas (sendo quatro máquinas virtuais e uma máquina real). Foram criados dois sistemas de inferência nebulosos, para análise de problemas na rede de segurança implementados em Java, no ambiente distribuído. Foram realizados diversos testes com o intuito de verificar o funcionamento da aplicação, apresentando um resultado satisfatório dentro dessa metodologia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os testes são uma atividade crucial no desenvolvimento de sistemas, pois uma boa execução dos testes podem expor anomalias do software e estas podem ser corrigidas ainda no processo de desenvolvimento, reduzindo custos. Esta dissertação apresenta uma ferramenta de testes chamada SIT (Sistema de Testes) que auxiliará no teste de Sistemas de Informações Geográficas (SIG). Os SIG são caracterizados pelo uso de informações espaciais georreferenciadas, que podem gerar um grande número de casos de teste complexos. As técnicas tradicionais de teste são divididas em funcionais e estruturais. Neste trabalho, o SIT abordará os testes funcionais, focado em algumas técnicas clássicas como o particionamento de equivalência e análise do Valor Limite. O SIT também propõe o uso de Lógica Nebulosa como uma ferramenta que irá sugerir um conjunto mínimo de testes a executar nos SIG, ilustrando os benefícios da ferramenta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho propõe-se a descrever uma metodologia para avaliação do sistema de educação fundamental do Estado do Rio de Janeiro, que utiliza a teoria dos conjuntos nebulosos como base, no processo de inferência para geração do Indicador Avaliação do Sistema Educacional (IASE). A base de dados utilizada para criação do indicador IASE foi extraída de dados obtidos do Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP). Em seguida, os resultados obtidos são apresentados em um Sistema de informação Geográfica (SIG) possibilitando compreender a correlação de valores alfanuméricos e espacial das informações geradas no sistema nebuloso, de modo apoiar a tomada de decisão das ações governamentais no setor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária