425 resultados para Kotzig Conjecture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with combinatorics, order theory and descriptive set theory. The first contribution is to the theory of well-quasi-orders (wqo) and better-quasi-orders (bqo). The main result is the proof of a conjecture made by Maurice Pouzet in 1978 his thèse d'état which states that any wqo whose ideal completion remainder is bqo is actually bqo. Our proof relies on new results with both a combinatorial and a topological flavour concerning maps from a front into a compact metric space. The second contribution is of a more applied nature and deals with topological spaces. We define a quasi-order on the subsets of every second countable To topological space in a way that generalises the Wadge quasi-order on the Baire space, while extending its nice properties to virtually all these topological spaces. The Wadge quasi-order of reducibility by continuous functions is wqo on Borei subsets of the Baire space, this quasi-order is however far less satisfactory for other important topological spaces such as the real line, as Hertling, Ikegami and Schlicht notably observed. Some authors have therefore studied reducibility with respect to some classes of discontinuous functions to remedy this situation. We propose instead to keep continuity but to weaken the notion of function to that of relation. Using the notion of admissible representation studied in Type-2 theory of effectivity, we define the quasi-order of reducibility by relatively continuous relations. We show that this quasi-order both refines the classical hierarchies of complexity and is wqo on the Borei subsets of virtually every second countable To space - including every (quasi-)Polish space. -- Cette thèse se situe dans les domaines de la combinatoire, de la théorie des ordres et de la théorie descriptive. La première contribution concerne la théorie des bons quasi-ordres (wqo) et des meilleurs quasi-ordres (bqo). Le résultat principal est la preuve d'une conjecture, énoncée par Pouzet en 1978 dans sa thèse d'état, qui établit que tout wqo dont l'ensemble des idéaux non principaux ordonnés par inclusion forme un bqo est alors lui-même un bqo. La preuve repose sur de nouveaux résultats, qui allient la combinatoire et la topologie, au sujet des fonctions d'un front vers un espace métrique compact. La seconde contribution de cette thèse traite de la complexité topologique dans le cadre des espaces To à base dénombrable. Dans le cas de l'espace de Baire, le quasi-ordre de Wadge est un wqo sur les sous-ensembles Boréliens qui a suscité énormément d'intérêt. Cependant cette relation de réduction par fonctions continues s'avère bien moins satisfaisante pour d'autres espaces d'importance tels que la droite réelle, comme l'ont fait notamment remarquer Hertling, Schlicht et Ikegami. Nous proposons de conserver la continuité et d'affaiblir la notion de fonction pour celle de relation. Pour ce faire, nous utilisons la notion de représentation admissible étudiée en « Type-2 theory of effectivity » initiée par Weihrauch. Nous introduisons alors le quasi-ordre de réduction par relations relativement continues et montrons que celui-ci à la fois raffine les hiérarchies classiques de complexité topologique et forme un wqo sur les sous-ensembles Boréliens de chaque espace quasi-Polonais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let $Q$ be a suitable real function on $C$. An $n$-Fekete set corresponding to $Q$ is a subset ${Z_{n1}},\dotsb, Z_{nn}}$ of $C$ which maximizes the expression $\Pi^n_i_{conjecture that such global results are true for a wide range of potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les tâches nécessitant des manipulations et des transformations de figures géométriques et de formes, comme les tâches de rotation mentale, donnent lieu à des différences de performance entre hommes et femmes qui restent intrigantes. Plusieurs hypothèses ont été proposées pour expliquer ces différences. La plus récurrente porte sur les différences de stratégie globale vs locale utilisées pour traiter l'information. Bien que cette conjecture soit intéressante, elle reste difficile à opérationnaliser car elle englobe tous les mécanismes cognitifs (acquisition, conservation et récupération de l'information). Ce travail prend la forme d'un retour aux sources dans la mesure où il se base sur des recherches anciennes qui ont montré que les hommes perçoivent significativement mieux que les femmes la verticale et l'horizontale. Il teste l'hypothèse selon laquelle les hommes, comparativement aux femmes, présentent une plus forte indépendance au champ perceptif visuel et sont donc plus susceptibles d'utiliser la verticalité et l'horizontalité pour résoudre une tâche de rotation mentale. Une première série d'expériences s'est penchée sur la perception spatiale pour évaluer son impact sur la résolution d'une tâche impliquant la rotation mentale. Les résultats ont montré que seuls les hommes se référaient à la verticalité et à l'horizontalité pour résoudre la tâche. Une seconde série d'expériences ont investigué l'effet de la présence, ou absence, d'axes directionnels directement liés à une tâche de rotation mentale. Elles ont été menées également en environnement réel afin d'évaluer comment le déplacement actif ou passif, correspondant à un changement de perspective en lieu et place d'une rotation mentale, module la performance des hommes et des femmes. Les résultats n'ont pas mis en évidence de différence sexuelle. Notre hypothèse est vérifiée puisque c'est uniquement lorsque la tâche ne présente pas d'axes orthogonaux évidents mais implicites que seuls les hommes, plus indépendants au champ perceptif visuel que les femmes, utilisent la perception de la verticalité et de l'horizontalité pour améliorer leur compétence en rotation mentale. -- Tasks that require manipulation and transformation of geometric shapes and forms, like tasks of mental rotation and give rise to differences in performance between men and women, remain intriguing. Several hypotheses have been proposed to explain these differences. The most recurring hypothesis addresses differences in global versus local strategies for processing information. While this conjecture is interesting, it remains difficult to study because it encompasses all the cognitive mechanisms (acquisition, retention and output). This work returns to the sources, which are based on earlier research that shows that men are significantly better than women at perceiving verticality and horizontality. It tests the hypothesis according to which men, as compared to women, exhibit a greater independence on the perceptive visual field, and therefore are more susceptible to utilizing the verticality and the horizontality to solve a mental rotation task. A first set of experiments examined spatial perception in order to assess its impact on the resolution of a task involving mental rotation. The results showed that only men referred to the verticality and the horizontality to solve the task. A second series of experiments investigated the effect of a presence, or absence of directional axes directed tied to the task of mental rotation. They were also conducted in a real world environment to evaluate how the active or passive displacement, corresponding to a change in perspective instead of a mental rotation, modulates the performance of men and women. The results did not show sex differences. Our hypothesis is verified: it is only when the task presents no obvious, but implicit orthogonal axes that men, who exhibit a greater independence on the perceptive visual field than women, use the perception of verticality and horizontality to improve their competence in mental rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo del texto es recuperar la intuición de Johan Georg Baiter (1801-­‐‑1877) que propuso Tusculum (Lacio, Italia) como patria de origen de Marco Celio Rufo enmendando una corruptela en la edición orelliana del Pro Caelio ciceroniano. Esta conjetura, desestimada en todas las ediciones posteriores del texto, ha sido recientemente confirmada gracias al hallazgo de un epígrafe que documenta por vez primera en la ciudad lacial un magistrado M. Caelius de época tardorepublicana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is divided into two different parts. The first one provides a brief introduction to the fractal geometry with some simple illustrations in fluid mechanics. We thought it would be helpful to introduce the reader into this relatively new approach to mechanics that has not been sufficiently explored by engineers yet. Although in fluid mechanics, mainly in problems of percolation and binary flows, the use of fractals has gained some attention, the same is not true for solid mechanics, from the best of our knowledge. The second part deals with the mechanical behavior of thin wires subjected to very large deformations. It is shown that starting to a plausible conjecture it is possible to find global constitutive equations correlating geometrical end energy variables with the fractal dimension of the solid subjected to large deformations. It is pointed out the need to complement the present proposal with experimental work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates pricing of liquidity in the French stock market. The study covers 835 ordinary shares traded in the period of 1996-2014 on Paris Euronext. The author utilizes the Liquidity-Adjusted Capital Asset Pricing Model (LCAPM) recently developed by Acharya and Pedersen (2005) to test whether liquidity level and risks significantly affect stock returns. Three different liquidity measures – Amihud, FHT, and PQS – are incorporated into the model to find any difference between the results they could provide. It appears that the findings largely depend on the liquidity measure used. In general the results exhibit more evidence for insignificant influence of liquidity level and risks as well as market risk on stock returns. The similar conclusion was reported earlier by Lee (2011) for several regions, including France. This finding of the thesis, however, is not consistent across all the liquidity measures. Nevertheless, the difference in the results between these measures provides new insight to the existing literature on this topic. The Amihud-based findings might indicate that market resiliency is not priced in the French stock market. At the same time the contradicting results from FHT and PQS provide some foundation for the hypothesis that one of two leftover liquidity dimensions – market depth or breadth – could significantly affect stock returns. Therefore, the thesis’ findings suggest a conjecture that different liquidity dimensions have different impacts on stock returns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a systemic disease characterized by intolerance to glucose and peripheral resistance to insulin. This endocrine disease affects fundamental mechanisms of the central nervous system and jeopardizes the balance of vital functions such as the cardiovascular and circadian rhythm. The increased prevalence of metabolic disorders in our society is aggravated by endemic voluntary postponement of bedtime and by the current sedentary lifestyle, leading to epidemic proportions of obese people. Diabetes and chronic loss of sleep share the fact that both affect millions and one is detrimental to the other. Indeed, sleep deficits have marked modulatory effects on glucose metabolism and insulin sensitivity and foster metabolic syndrome that culminates in sleep disorders like restless syndrome and sleep apnea, which in turn lead to poor sleep quality. We examine the hypothesis that these two worldwide emerging disorders are due to two interlinked cycles. In our paradigm, we establish an intimate relationship between diabetes and sleep disturbances and postulate possible mechanisms that provide support for this conjecture. In addition, we propose some perspectives about the development of the reciprocal interaction between predictor components of metabolic syndrome and sleep disturbances that lead to poor sleep quality. The ability to predict the development and identify or associate a given mode of sleep disturbance to diabetes would be a valuable asset in the assessment of both. Furthermore, major advances in care coupled with healthy lifestyles can ensure a higher quality of life for people with diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Root and root finding are concepts familiar to most branches of mathematics. In graph theory, H is a square root of G and G is the square of H if two vertices x,y have an edge in G if and only if x,y are of distance at most two in H. Graph square is a basic operation with a number of results about its properties in the literature. We study the characterization and recognition problems of graph powers. There are algorithmic and computational approaches to answer the decision problem of whether a given graph is a certain power of any graph. There are polynomial time algorithms to solve this problem for square of graphs with girth at least six while the NP-completeness is proven for square of graphs with girth at most four. The girth-parameterized problem of root fining has been open in the case of square of graphs with girth five. We settle the conjecture that recognition of square of graphs with girth 5 is NP-complete. This result is providing the complete dichotomy theorem for square root finding problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conjecture claiming that every planar graph is acyclic 5-choosable[Borodin et al., 2002] has been verified for several restricted classes of planargraphs. Recently, O. V. Borodin and A. O. Ivanova, [Journal of Graph Theory,68(2), October 2011, 169-176], have shown that a planar graph is acyclically 5-choosable if it does not contain an i-cycle adjacent to a j-cycle, where 3<=j<=5 if i=3 and 4<=j<=6 if i=4. We improve the above mentioned result and prove that every planar graph without an i-cycle adjacent to a j-cycle with3<=j<=5 if i=3 and 4<=j<=5 if i=4 is acyclically 5-choosable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the List Colouring Conjecture, if G is a multigraph then χ' (G)=χl' (G) . In this thesis, we discuss a relaxed version of this conjecture that every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem ∆(G) ≤χ' (G)≤∆(G) + 1. We prove that if G is a planar graph without 7-cycles with ∆(G)≠5,6 , or without adjacent 4-cycles with ∆(G)≠5, or with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable.